Do you want to publish a course? Click here

Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe$_2$ mirror twin boundaries

181   0   0.0 ( 0 )
 Added by Wei Ruan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

One-dimensional electron systems (1DESs) exhibit properties that are fundamentally different from higher-dimensional systems. For example, electron-electron interactions in 1DESs have been predicted to induce Tomonaga-Luttinger liquid behavior. Naturally-occurring grain boundaries in single-layer semiconducting transition metal dichalcogenides provide 1D conducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been suggested to explain their behavior. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and thereby tune their charge carrier concentration. Here we present a scanning tunneling microscopy/spectroscopy study of gate-tunable mirror twin boundaries (MTBs) in single-layer 1H-MoSe$_2$ devices. Gating here enables STM spectroscopy to be performed for different MTB electron densities, thus allowing precise characterization of electron-electron interaction effects. Visualization of MTB electronic structure under these conditions allows unambiguous identification of collective density wave excitations having two distinct velocities, in quantitative agreement with the spin-charge separation predicted by finite-length Tomonaga-Luttinger-liquid theory.



rate research

Read More

Two- or three-dimensional metals are usually well described by weakly interacting, fermionic quasiparticles. This concept breaks down in one dimension due to strong Coulomb interactions. There, low-energy electronic excitations are expected to be bosonic collective modes, which fractionalize into independent spin and charge density waves. Experimental research on one-dimensional metals is still hampered by their difficult realization, their limited accessibility to measurements, and by competing or obscuring effects such as Peierls distortions or zero bias anomalies. Here we overcome these difficulties by constructing a well-isolated, one-dimensional metal of finite length present in MoS$_2$ mirror twin boundaries. Using scanning tunneling spectroscopy we measure the single-particle density of the interacting electron system as a function of energy and position in the 1D box. Comparison to theoretical modeling provides unambiguous evidence that we are observing spin-charge separation in real space.
There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning tunneling spectroscopy to reveal both the quantum confinement effect and signatures of TLL in the one-dimensional DBs. The data do not support the CDW at temperatures down to ~5 K.
We present two methods to determine whether the interactions in a Tomonaga-Luttinger liquid (TLL) state of a spin-$1/2$ Heisenberg antiferromagnetic ladder are attractive or repulsive. The first method combines two bulk measurements, of magnetization and specific heat, to deduce the TLL parameter that distinguishes between the attraction and repulsion. The second one is based on a local-probe, NMR measurements of the spin-lattice relaxation. For the strong-leg spin ladder compound $mathrm{(C_7H_{10}N)_2CuBr_4}$ we find that the isothermal magnetic field dependence of the relaxation rate, $T_1^{-1}(H)$, displays a concave curve between the two critical fields that bound the TLL regime. This is in sharp contrast to the convex curve previously reported for a strong-rung ladder $mathrm{(C_5H_{12}N)_2CuBr_4}$. Within the TLL description, we show that the concavity directly reflects the attractive interactions, while the convexity reflects the repulsive ones.
We investigate charge fractionalizations in artificial Tomonaga-Luttinger liquids (TLLs) composed of two capacitively coupled quantum Hall edge channels (ECs) in graphene. The interaction strength of the artificial TLLs can be controlled through distance W between the ECs. We show that the fractionalization ratio r and the TLL mode velocity v vary with W. The experimentally obtained relation between v and r follows a unique function predicted by the TLL theory. We also show that charged wavepackets are reflected back and forth multiple times at both ends of the TLL region.
383 - S. Grap , V. Meden 2009
We use Wilsons weak coupling ``momentum shell renormalization group method to show that two-particle interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with open boundaries are indeed irrelevant in the renormalization group sense. Our study provides a more solid ground for many investigations of Luttinger liquids with open boundaries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا