Do you want to publish a course? Click here

Tomonaga-Luttinger liquid in a box: electrons confined within MoS$_2$ mirror twin boundaries

66   0   0.0 ( 0 )
 Added by Wouter Jolie
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two- or three-dimensional metals are usually well described by weakly interacting, fermionic quasiparticles. This concept breaks down in one dimension due to strong Coulomb interactions. There, low-energy electronic excitations are expected to be bosonic collective modes, which fractionalize into independent spin and charge density waves. Experimental research on one-dimensional metals is still hampered by their difficult realization, their limited accessibility to measurements, and by competing or obscuring effects such as Peierls distortions or zero bias anomalies. Here we overcome these difficulties by constructing a well-isolated, one-dimensional metal of finite length present in MoS$_2$ mirror twin boundaries. Using scanning tunneling spectroscopy we measure the single-particle density of the interacting electron system as a function of energy and position in the 1D box. Comparison to theoretical modeling provides unambiguous evidence that we are observing spin-charge separation in real space.



rate research

Read More

There have been conflicting reports on the electronic properties of twin domain boundaries (DBs) in MoSe2 monolayer, including the quantum well states, charge density wave, and Tomonaga-Luttinger liquid (TLL). Here we employ low-temperature scanning tunneling spectroscopy to reveal both the quantum confinement effect and signatures of TLL in the one-dimensional DBs. The data do not support the CDW at temperatures down to ~5 K.
One-dimensional electron systems (1DESs) exhibit properties that are fundamentally different from higher-dimensional systems. For example, electron-electron interactions in 1DESs have been predicted to induce Tomonaga-Luttinger liquid behavior. Naturally-occurring grain boundaries in single-layer semiconducting transition metal dichalcogenides provide 1D conducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been suggested to explain their behavior. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and thereby tune their charge carrier concentration. Here we present a scanning tunneling microscopy/spectroscopy study of gate-tunable mirror twin boundaries (MTBs) in single-layer 1H-MoSe$_2$ devices. Gating here enables STM spectroscopy to be performed for different MTB electron densities, thus allowing precise characterization of electron-electron interaction effects. Visualization of MTB electronic structure under these conditions allows unambiguous identification of collective density wave excitations having two distinct velocities, in quantitative agreement with the spin-charge separation predicted by finite-length Tomonaga-Luttinger-liquid theory.
135 - Y. Jompol 2010
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.
We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phase boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid.
We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا