Do you want to publish a course? Click here

Visible Watermark Removal via Self-calibrated Localization and Background Refinement

127   0   0.0 ( 0 )
 Added by Jing Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Superimposing visible watermarks on images provides a powerful weapon to cope with the copyright issue. Watermark removal techniques, which can strengthen the robustness of visible watermarks in an adversarial way, have attracted increasing research interest. Modern watermark removal methods perform watermark localization and background restoration simultaneously, which could be viewed as a multi-task learning problem. However, existing approaches suffer from incomplete detected watermark and degraded texture quality of restored background. Therefore, we design a two-stage multi-task network to address the above issues. The coarse stage consists of a watermark branch and a background branch, in which the watermark branch self-calibrates the roughly estimated mask and passes the calibrated mask to background branch to reconstruct the watermarked area. In the refinement stage, we integrate multi-level features to improve the texture quality of watermarked area. Extensive experiments on two datasets demonstrate the effectiveness of our proposed method.

rate research

Read More

While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera. At the heart of our approach lies the observation that object segmentation and background reconstruction are linked tasks, and that, for structured scenes, background regions can be re-synthesized from their surroundings, whereas regions depicting the moving object cannot. We encode this intuition into a self-supervised loss function that we exploit to train a proposal-based segmentation network. To account for the discrete nature of the proposals, we develop a Monte Carlo-based training strategy that allows the algorithm to explore the large space of object proposals. We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
151 - Yingda Yin , Qingnan Fan , Fei Xia 2020
Humans can robustly localize themselves without a map after they get lost following prominent visual cues or landmarks. In this work, we aim at endowing autonomous agents the same ability. Such ability is important in robotics applications yet very challenging when an agent is exposed to partially calibrated environments, where camera images with accurate 6 Degree-of-Freedom pose labels only cover part of the scene. To address the above challenge, we explore using Reinforcement Learning to search for a policy to generate intelligent motions so as to actively localize the agent given visual information in partially calibrated environments. Our core contribution is to formulate the active visual localization problem as a Partially Observable Markov Decision Process and propose an algorithmic framework based on Deep Reinforcement Learning to solve it. We further propose an indoor scene dataset ACR-6, which consists of both synthetic and real data and simulates challenging scenarios for active visual localization. We benchmark our algorithm against handcrafted baselines for localization and demonstrate that our approach significantly outperforms them on localization success rate.
This paper introduces a new benchmarking dataset for marine snow removal of underwater images. Marine snow is one of the main degradation sources of underwater images that are caused by small particles, e.g., organic matter and sand, between the underwater scene and photosensors. We mathematically model two typical types of marine snow from the observations of real underwater images. The modeled artifacts are synthesized with underwater images to construct large-scale pairs of ground-truth and degraded images to calculate objective qualities for marine snow removal and to train a deep neural network. We propose two marine snow removal tasks using the dataset and show the first benchmarking results of marine snow removal. The Marine Snow Removal Benchmarking Dataset is publicly available online.
Knowledge distillation is a method of transferring the knowledge from a pretrained complex teacher model to a student model, so a smaller network can replace a large teacher network at the deployment stage. To reduce the necessity of training a large teacher model, the recent literatures introduced a self-knowledge distillation, which trains a student network progressively to distill its own knowledge without a pretrained teacher network. While Self-knowledge distillation is largely divided into a data augmentation based approach and an auxiliary network based approach, the data augmentation approach looses its local information in the augmentation process, which hinders its applicability to diverse vision tasks, such as semantic segmentation. Moreover, these knowledge distillation approaches do not receive the refined feature maps, which are prevalent in the object detection and semantic segmentation community. This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD), which utilizes an auxiliary self-teacher network to transfer a refined knowledge for the classifier network. Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation. Therefore, FRSKD can be applied to classification, and semantic segmentation, which emphasize preserving the local information. We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets. The implemented code is available at https://github.com/MingiJi/FRSKD.
93 - Cong Wang , Yutong Wu , Zhixun Su 2020
In the field of multimedia, single image deraining is a basic pre-processing work, which can greatly improve the visual effect of subsequent high-level tasks in rainy conditions. In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem and conduct the segmentation and detection task for applications. Specifically, considering the important information on multi-scale features, we propose a Scale-Aggregation module to learn the features with different scales. Simultaneously, Self-Attention module is introduced to match or outperform their convolutional counterparts, which allows the feature aggregation to adapt to each channel. Furthermore, to improve the basic convolutional feature transformation process of Convolutional Neural Networks (CNNs), Self-Calibrated convolution is applied to build long-range spatial and inter-channel dependencies around each spatial location that explicitly expand fields-of-view of each convolutional layer through internal communications and hence enriches the output features. By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results both on real-world and synthetic datasets. Extensive experiments are conducted to demonstrate the superiority of our method compared with state-of-the-art methods. The source code will be available at url{https://supercong94.wixsite.com/supercong94}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا