Do you want to publish a course? Click here

Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining Network

94   0   0.0 ( 0 )
 Added by Cong Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the field of multimedia, single image deraining is a basic pre-processing work, which can greatly improve the visual effect of subsequent high-level tasks in rainy conditions. In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem and conduct the segmentation and detection task for applications. Specifically, considering the important information on multi-scale features, we propose a Scale-Aggregation module to learn the features with different scales. Simultaneously, Self-Attention module is introduced to match or outperform their convolutional counterparts, which allows the feature aggregation to adapt to each channel. Furthermore, to improve the basic convolutional feature transformation process of Convolutional Neural Networks (CNNs), Self-Calibrated convolution is applied to build long-range spatial and inter-channel dependencies around each spatial location that explicitly expand fields-of-view of each convolutional layer through internal communications and hence enriches the output features. By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results both on real-world and synthetic datasets. Extensive experiments are conducted to demonstrate the superiority of our method compared with state-of-the-art methods. The source code will be available at url{https://supercong94.wixsite.com/supercong94}.



rate research

Read More

Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gated context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance. Code has been made available at https://github.com/cddlyf/GCANet.
Self-attention (SA) network has shown profound value in image captioning. In this paper, we improve SA from two aspects to promote the performance of image captioning. First, we propose Normalized Self-Attention (NSA), a reparameterization of SA that brings the benefits of normalization inside SA. While normalization is previously only applied outside SA, we introduce a novel normalization method and demonstrate that it is both possible and beneficial to perform it on the hidden activations inside SA. Second, to compensate for the major limit of Transformer that it fails to model the geometry structure of the input objects, we propose a class of Geometry-aware Self-Attention (GSA) that extends SA to explicitly and efficiently consider the relative geometry relations between the objects in the image. To construct our image captioning model, we combine the two modules and apply it to the vanilla self-attention network. We extensively evaluate our proposals on MS-COCO image captioning dataset and superior results are achieved when comparing to state-of-the-art approaches. Further experiments on three challenging tasks, i.e. video captioning, machine translation, and visual question answering, show the generality of our methods.
Existing video polyp segmentation (VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs can not fully exploit the global temporal and spatial information in successive video frames, resulting in false-positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single RTX 2080 GPU and no post-processing. Our PNS-Net is based solely on a basic normalized self-attention block, equipping with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.
82 - Xudong Guo , Xun Guo , Yan Lu 2021
Self-attention has been successfully applied to video representation learning due to the effectiveness of modeling long range dependencies. Existing approaches build the dependencies merely by computing the pairwise correlations along spatial and temporal dimensions simultaneously. However, spatial correlations and temporal correlations represent different contextual information of scenes and temporal reasoning. Intuitively, learning spatial contextual information first will benefit temporal modeling. In this paper, we propose a separable self-attention (SSA) module, which models spatial and temporal correlations sequentially, so that spatial contexts can be efficiently used in temporal modeling. By adding SSA module into 2D CNN, we build a SSA network (SSAN) for video representation learning. On the task of video action recognition, our approach outperforms state-of-the-art methods on Something-Something and Kinetics-400 datasets. Our models often outperform counterparts with shallower network and fewer modalities. We further verify the semantic learning ability of our method in visual-language task of video retrieval, which showcases the homogeneity of video representations and text embeddings. On MSR-VTT and Youcook2 datasets, video representations learnt by SSA significantly improve the state-of-the-art performance.
3D convolutional neural networks have achieved promising results for video tasks in computer vision, including video saliency prediction that is explored in this paper. However, 3D convolution encodes visual representation merely on fixed local spacetime according to its kernel size, while human attention is always attracted by relational visual features at different time of a video. To overcome this limitation, we propose a novel Spatio-Temporal Self-Attention 3D Network (STSANet) for video saliency prediction, in which multiple Spatio-Temporal Self-Attention (STSA) modules are employed at different levels of 3D convolutional backbone to directly capture long-range relations between spatio-temporal features of different time steps. Besides, we propose an Attentional Multi-Scale Fusion (AMSF) module to integrate multi-level features with the perception of context in semantic and spatio-temporal subspaces. Extensive experiments demonstrate the contributions of key components of our method, and the results on DHF1K, Hollywood-2, UCF, and DIEM benchmark datasets clearly prove the superiority of the proposed model compared with all state-of-the-art models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا