Do you want to publish a course? Click here

Gigahertz free-space electro-optic modulators based on Mie resonances

118   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electro-optic modulators from non-linear $chi^{(2)}$ materials are essential for sensing, metrology and telecommunications because they link the optical domain with the microwave domain. At present, most geometries are suited for fiber applications. In contrast, architectures that modulate directly free-space light at gigahertz (GHz) speeds have remained very challenging, despite their dire need for active free-space optics, in diffractive computing or for optoelectronic feedback to free-space emitters. They are typically bulky or suffer from much reduced interaction lengths. Here, we employ an ultrathin array of sub-wavelength Mie resonators that support quasi bound states in the continuum (BIC) as a key mechanism to demonstrate electro-optic modulation of free-space light with high efficiency at GHz speeds. Our geometry relies on hybrid silicon-organic nanostructures that feature low loss ($Q = $ 550 at $lambda_{res} = 1594$ nm) while being integrated with GHz-compatible coplanar waveguides. We maximize the electro-optic effect by using high-performance electro-optic molecules (whose electro-optic tensor we engineer in-device to exploit $r_{33} = 100$ pm/V) and by nanoscale optimization of the optical modes. We demonstrate both DC tuning and high speed modulation up to 5~GHz ($f_{EO,-3 dB} =3$ GHz) and shift the resonant frequency of the quasi-BIC by $Deltalambda_{res}=$11 nm, surpassing its linewidth. We contrast the properties of quasi-BIC modulators by studying also guided mode resonances that we tune by $Deltalambda_{res}=$20 nm. Our approach showcases the potential for ultrathin GHz-speed free-space electro-optic modulators.



rate research

Read More

Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitively expensive to scale up. Here we demonstrate scalable and high-performance nanophotonic electro-optic modulators made of single-crystalline lithium niobate microring resonators and micro-Mach-Zehnder interferometers. We show a half-wave electro-optic modulation efficiency of 1.8V$cdot$cm and data rates up to 40 Gbps.
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. However, these resonances normally cannot be tuned. Although phase change materials, such as the germanium-antimony-tellurium alloys and post transition metal oxides, such as ITO, have been used to tune optical antennas in the near infrared spectrum, tunable dielectric antennae in the visible spectrum remain to be demonstrated. In this paper, we designed and experimentally demonstrated tunable dielectric nanoantenna arrays with Mie resonances in the visible spectrum, exploiting phase transitions in wide-bandgap Sb2S3 nano-resonators. In the amorphous state, Mie resonances in these Sb2S3 nanostructures give rise to a strong structural color in reflection mode. Thermal annealing induced crystallization and laser induced amorphization of the Sb2S3 resonators allow the color to be tuned reversibly. We believe these tunable Sb2S3 nanoantennae arrays will enable a wide variety of tunable nanophotonic applications, such as high-resolution color displays, holographic displays, and miniature LiDAR systems.
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.
Many technologies in quantum photonics require cryogenic conditions to operate. However, the underlying platform behind active components such as switches, modulators and phase shifters must be compatible with these operating conditions. To address this, we demonstrate an electro-optic polarisation converter for 1550nm light at 0.8K in titanium in-diffused lithium niobate waveguides. To do so, we exploit the electro-optic properties of lithium niobate to convert between orthogonal polarisation modes with a fiber-to-fiber transmission >43%. We achieve a modulation depth of 23.6 +/-3.3dB and a conversion voltage-length product of 28.8 V cm. This enables the combination of cryogenic photonics and active components on a single integration platform.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا