Do you want to publish a course? Click here

The Einstein-Hilbert-Palatini formalism in Pseudo-Finsler Geometry

149   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A systematic development of the so-called Palatini formalism is carried out for pseudo-Finsler metrics $L$ of any signature. Substituting in the classical Einstein-Hilbert-Palatini functional the scalar curvature by the Finslerian Ricci scalar constructed with an independent nonlinear connection $mathrm{N}$, the metric and affine equations for $(mathrm{N},L)$ are obtained. In Lorentzian signature with vanishing mean Landsberg tensor $mathrm{Lan}_i$, both the Finslerian Hilbert metric equation and the classical Palatini conclusions are recovered by means of a combination of techniques involving the (Riemannian) maximum principle and an original argument about divisibility and fiberwise analyticity. Some of these findings are also extended to (positive definite) Riemannian metrics by using the eigenvalues of the Laplacian. When $mathrm{Lan}_i eq 0$, the Palatini conclusions fail necessarily, however, a good number of properties of the solutions remain. The framework and proofs are built up in detail.



rate research

Read More

We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of solutions generalising the Levi-Civita connection, characterised by an arbitrary, non-dynamical vector field ${cal A}_mu$. We discuss the mathematical properties and the physical implications of this family and argue that, although there is a clear mathematical difference between these new Palatini connections and the Levi-Civita one, both unparametrised geodesics and the Einstein equation are shared by all of them. Moreover, the Palatini connections are characterised precisely by these two properties, as well as by other properties of its parallel transport. Based on this, we conclude that physical effects associated to the choice of one or the other will not be distinguishable, at least not at the level of solutions or test particle dynamics. We propose a geometrical interpretation for the existence and unobservability of the new solutions.
We generalize the notion of Zermelo navigation to arbitrary pseudo-Finsler metrics possibly defined in conic subsets. The translation of a pseudo-Finsler metric $F$ is a new pseudo-Finsler metric whose indicatrix is the translation of the indicatrix of $F$ by a vector field $W$ at each point, where $W$ is an arbitrary vector field. Then we show that the Matsumoto tensor of a pseudo-Finsler metric is equal to zero if and only if it is the translation of a semi-Riemannian metric, and when $W$ is homothetic, the flag curvature of the translation coincides with the one of the original one up to the addition of a non-positive constant. In this case, we also give a description of the geodesic flow of the translation.
A geodesic circle in Finsler geometry is a natural extension of that in a Euclidean space. In this paper, we apply Lie derivatives and the Cartan $Y$-connection to study geodesic circles and (infinitesimal) concircular transformations on a Finsler manifold. We characterize a concircular vector field with some PDEs on the tangent bundle, and then we obtain respective necessary and sufficient conditions for a concircular vector field to be conformal and a conformal vector field to be concircular. We also show conditions for two conformally related Finsler metrics to be concircular, and obtain some invariant curvature properties under conformal and concircular transformations.
88 - E. Minguzzi 2021
In the standard approach to Finsler geometry the metric is defined as a vertical Hessian and the Chern or Cartan connections appear as just two among many possible natural linear connections on the pullback tangent bundle. Here it is shown that the Hessian nature of the metric, the non-linear connection and the Chern or Cartan connections can be derived from a few compatibility axioms between metric and Finsler connection. This result provides a metric foundation to Finsler geometry and hence justifies the claim that ``Finsler geometry is Riemannian geometry without the quadratic restriction. The paper also contains a study of the compatibility condition to be placed between the metric and the non-linear connection.
In this paper, we prove that lightlike geodesics of a pseudo-Finsler manifold and its focal points are preserved up to reparametrization by anisotropic conformal changes, using the Chern connection and the anisotropic calculus and the fact that geodesics are critical points of the energy functional and Jacobi fields, the kernel of its index form. This result has applications to the study of Finsler spacetimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا