No Arabic abstract
Despite the ubiquity of communicative visualizations, specifying communicative intent during design is ad hoc. Whether we are selecting from a set of visualizations, commissioning someone to produce them, or creating them ourselves, an effective way of specifying intent can help guide this process. Ideally, we would have a concise and shared specification language. In previous work, we have argued that communicative intents can be viewed as a learning/assessment problem (i.e., what should the reader learn and what test should they do well on). Learning-based specification formats are linked (e.g., assessments are derived from objectives) but some may more effectively specify communicative intent. Through a large-scale experiment, we studied three specification types: learning objectives, insights, and assessments. Participants, guided by one of these specifications, rated their preferences for a set of visualization designs. Then, we evaluated the set of visualization designs to assess which specification led participants to prefer the most effective visualizations. We find that while all specification types have benefits over no-specification, each format has its own advantages. Our results show that learning objective-based specifications helped participants the most in visualization selection. We also identify situations in which specifications may be insufficient and assessments are vital.
In this paper, we critically examine the effectiveness of the requirement to conduct a Data Protection Impact Assessment (DPIA) in Article 35 of the General Data Protection Regulation (GDPR) in light of fairness metrics. Through this analysis, we explore the role of the fairness principle as introduced in Article 5(1)(a) and its multifaceted interpretation in the obligation to conduct a DPIA. Our paper argues that although there is a significant theoretical role for the considerations of fairness in the DPIA process, an analysis of the various guidance documents issued by data protection authorities on the obligation to conduct a DPIA reveals that they rarely mention the fairness principle in practice.
The impact of COVID-19 on students has been enormous, with an increase in worries about fiscal and physical health, a rapid shift to online learning, and increased isolation. In addition to these changes, students with disabilities/health concerns may face accessibility problems with online learning or communication tools, and their stress may be compounded by additional risks such as financial stress or pre-existing conditions. To our knowledge, no one has looked specifically at the impact of COVID-19 on students with disabilities/health concerns. In this paper, we present data from a survey of 147 students with and without disabilities collected in late March to early April of 2020 to assess the impact of COVID-19 on these students education and mental health. Our findings show that students with disabilities/health concerns were more concerned about classes going online than their peers without disabilities. In addition, students with disabilities/health concerns also reported that they have experienced more COVID-19 related adversities compared to their peers without disabilities/health concerns. We argue that students with disabilities/health concerns in higher education need confidence in the accessibility of the online learning tools that are becoming increasingly prevalent in higher education not only because of COVID-19 but also more generally. In addition, educational technologies will be more accessible if they consider the learning context, and are designed to provide a supportive, calm, and connecting learning environment.
In the attention economy, video apps employ design mechanisms like autoplay that exploit psychological vulnerabilities to maximize watch time. Consequently, many people feel a lack of agency over their app use, which is linked to negative life effects such as loss of sleep. Prior design research has innovated external mechanisms that police multiple apps, such as lockout timers. In this work, we shift the focus to how the internal mechanisms of an app can support user agency, taking the popular YouTube mobile app as a test case. From a survey of 120 U.S. users, we find that autoplay and recommendations primarily undermine sense of agency, while search and playlists support it. From 13 co-design sessions, we find that when users have a specific intention for how they want to use YouTube they prefer interfaces that support greater agency. We discuss implications for how designers can help users reclaim a sense of agency over their media use.
Trust is a multilayered concept with critical relevance when it comes to introducing new technologies. Understanding how humans will interact with complex vehicle systems and preparing for the functional, societal and psychological aspects of autonomous vehicles entry into our cities is a pressing concern. Design tools can help calibrate the adequate and affordable level of trust needed for a safe and positive experience. This study focuses on passenger interactions capable of enhancing the system trustworthiness and data accuracy in future shared public transportation.
To support ethical considerations and system integrity in learning analytics, this paper introduces two cases of applying the Value Sensitive Design methodology to learning analytics design. The first study applied two methods of Value Sensitive Design, namely stakeholder analysis and value analysis, to a conceptual investigation of an existing learning analytics tool. This investigation uncovered a number of values and value tensions, leading to design trade-offs to be considered in future tool refinements. The second study holistically applied Value Sensitive Design to the design of a recommendation system for the Wikipedia WikiProjects. To proactively consider values among stakeholders, we derived a multi-stage design process that included literature analysis, empirical investigations, prototype development, community engagement, iterative testing and refinement, and continuous evaluation. By reporting on these two cases, this paper responds to a need of practical means to support ethical considerations and human values in learning analytics systems. These two cases demonstrate that Value Sensitive Design could be a viable approach for balancing a wide range of human values, which tend to encompass and surpass ethical issues, in learning analytics design.