Do you want to publish a course? Click here

How Does COVID-19 impact Students with Disabilities/Health Concerns?

158   0   0.0 ( 0 )
 Added by Jennifer Mankoff
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The impact of COVID-19 on students has been enormous, with an increase in worries about fiscal and physical health, a rapid shift to online learning, and increased isolation. In addition to these changes, students with disabilities/health concerns may face accessibility problems with online learning or communication tools, and their stress may be compounded by additional risks such as financial stress or pre-existing conditions. To our knowledge, no one has looked specifically at the impact of COVID-19 on students with disabilities/health concerns. In this paper, we present data from a survey of 147 students with and without disabilities collected in late March to early April of 2020 to assess the impact of COVID-19 on these students education and mental health. Our findings show that students with disabilities/health concerns were more concerned about classes going online than their peers without disabilities. In addition, students with disabilities/health concerns also reported that they have experienced more COVID-19 related adversities compared to their peers without disabilities/health concerns. We argue that students with disabilities/health concerns in higher education need confidence in the accessibility of the online learning tools that are becoming increasingly prevalent in higher education not only because of COVID-19 but also more generally. In addition, educational technologies will be more accessible if they consider the learning context, and are designed to provide a supportive, calm, and connecting learning environment.



rate research

Read More

Coronavirus disease 2019, or COVID-19 in short, is a zoonosis, i.e., a disease that spreads from animals to humans. Due to its highly epizootic nature, it has compelled the public health experts to deploy smartphone applications to trace its rapid transmission pattern along with the infected persons as well by utilizing the persons personally identifiable information. However, these information may summon several undesirable provocations towards the technical experts in terms of privacy and cyber security, particularly the trust concerns. If not resolved by now, the circumstances will affect the mass level population through inadequate usage of the health applications in the smartphones and thus liberate the forgery of a catastrophe for another COVID-19-like zoonosis to come. Therefore, an extensive study was required to address this severe issue. This paper has fulfilled the study mentioned above needed by not only discussing the recently designed and developed health applications all over the regions around the world but also investigating their usefulness and limitations. The trust defiance is identified as well as scrutinized from the viewpoint of an end-user. Several recommendations are suggested in the later part of this paper to leverage awareness among the ordinary individuals.
136 - Shivam Agarwal , Shahid Latif , 2020
We conducted a questionnaire study aimed towards PhD students in the field of visualization research to understand how they cope with paper rejections. We collected responses from 24 participants and performed a qualitative analysis of the data in relation to the provided support by collaborators, resubmission strategies, handling multiple rejects, and personal impression of the reviews. The results indicate that the PhD students in the visualization community generally cope well with the negative reviews and, with experience, learn how to act accordingly to improve and resubmit their work. Our results reveal the main coping strategies that can be applied for constructively handling rejected visualization papers. The most prominent strategies include: discussing reviews with collaborators and making a resubmission plan, doing a major revision to improve the work, shortening the work, and seeing rejection as a positive learning experience.
The ongoing COVID-19 pandemic has raised concerns for many regarding personal and public health implications, financial security and economic stability. Alongside many other unprecedented challenges, there are increasing concerns over social isolation and mental health. We introduce textit{Expressive Interviewing}--an interview-style conversational system that draws on ideas from motivational interviewing and expressive writing. Expressive Interviewing seeks to encourage users to express their thoughts and feelings through writing by asking them questions about how COVID-19 has impacted their lives. We present relevant aspects of the systems design and implementation as well as quantitative and qualitative analyses of user interactions with the system. In addition, we conduct a comparative evaluation with a general purpose dialogue system for mental health that shows our system potential in helping users to cope with COVID-19 issues.
Objective: This study aims to identify the social determinants of mental health among undergraduate students in Bangladesh, a developing nation in South Asia. Our goal is to identify the broader social determinants of mental health among this population, study the manifestation of these determinants in their day-to-day life, and explore the feasibility of self-monitoring tools in helping them identify the specific factors or relationships that impact their mental health. Methods: We conducted a 21-day study with 38 undergraduate students from seven universities in Bangladesh. We conducted two semi-structured interviews: one pre-study and one post-study. During the 21-day study, participants used an Android application to self-report and self-monitor their mood after each phone conversation. The app prompted participants to report their mood after each phone conversation and provided graphs and charts so that participants could independently review their mood and conversation patterns. Results: Our results show that academics, family, job and economic condition, romantic relationships, and religion are the major social determinants of mental health among undergraduate students in Bangladesh. Our app helped the participants pinpoint the specific issues related to these factors as participants could review the pattern of their moods and emotions from past conversation history. Although our app does not provide any explicit recommendation, participants took certain steps on their own to improve their mental health (e.g., reduced the frequency of communication with certain persons). Conclusions: Overall, the findings from this study would provide better insights for the researchers to design better solutions to help the younger population from this part of the world.
In the fight against Covid-19, many governments and businesses are in the process of evaluating, trialling and even implementing so-called immunity passports. Also known as antibody or health certificates, there is a clear demand for any technology that could allow people to return to work and other crowded places without placing others at risk. One of the major criticisms of such systems is that they could be misused to unfairly discriminate against those without immunity, allowing the formation of an `immuno-privileged class of people. In this work we are motivated to explore an alternative technical solution that is non-discriminatory by design. In particular we propose health tokens -- randomised health certificates which, using methods from differential privacy, allow individual test results to be randomised whilst still allowing useful aggregate risk estimates to be calculated. We show that health tokens could mitigate immunity-based discrimination whilst still presenting a viable mechanism for estimating the collective transmission risk posed by small groups of users. We evaluate the viability of our approach in the context of identity-free and identity-binding use cases and then consider a number of possible attacks. Our experimental results show that for groups of size 500 or more, the error associated with our method can be as low as 0.03 on average and thus the aggregated results can be useful in a number of identity-free contexts. Finally, we present the results of our open-source prototype which demonstrates the practicality of our solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا