Do you want to publish a course? Click here

Structural completeness in many-valued logics with rational constants

441   0   0.0 ( 0 )
 Added by Tommaso Moraschini
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The logics RL, RP, and RG have been obtained by expanding Lukasiewicz logic L, product logic P, and Godel--Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in L, P, and G. Namely, RL is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules in RP, show their decidability, and characterize passive structural completeness for extensions of RP. Furthermore, structural completeness, hereditary structural completeness, and active structural completeness coincide for extensions of RP, and this is also the case for extensions of RG, where in turn passive structural completeness is characterized by the equivalent algebraic semantics having the joint embedding property. For nontrivial axiomatic extensions of RG we provide a base of admissible rules. We leave the problem open whether the variety of rational Godel algebras is Q-universal.



rate research

Read More

This paper shows how to transform explosive many-valued systems into paraconsistent logics. We investigate especially the case of three-valued systems showing how paraconsistent three-valued logics can be obtained from them.
We give a sufficient condition for Kripke completeness of modal logics enriched with the transitive closure modality. More precisely, we show that if a logic admits what we call definable filtration (ADF), then such an expansion of the logic is complete; in addition, has the finite model property, and again ADF. This argument can be iterated, and as an application we obtain the finite model property for PDL-like expansions of logics that ADF.
We consider model-theoretic properties related to the expressive power of three analogues of $L_{omega_1, omega}$ for metric structures. We give an example showing that one of these infinitary logics is strictly more expressive than the other two, but also show that all three have the same elementary equivalence relation for complete separable metric structures. We then prove that a continuous function on a complete separable metric structure is automorphism invariant if and only if it is definable in the more expressive logic. Several of our results are related to the existence of Scott sentences for complete separable metric structures.
198 - Luigi Santocanale 2008
This paper exhibits a general and uniform method to prove completeness for certain modal fixpoint logics. Given a set Gamma of modal formulas of the form gamma(x, p1, . . ., pn), where x occurs only positively in gamma, the language Lsharp (Gamma) is obtained by adding to the language of polymodal logic a connective sharp_gamma for each gamma epsilon. The term sharp_gamma (varphi1, . . ., varphin) is meant to be interpreted as the least fixed point of the functional interpretation of the term gamma(x, varphi 1, . . ., varphi n). We consider the following problem: given Gamma, construct an axiom system which is sound and complete with respect to the concrete interpretation of the language Lsharp (Gamma) on Kripke frames. We prove two results that solve this problem. First, let Ksharp (Gamma) be the logic obtained from the basic polymodal K by adding a Kozen-Park style fixpoint axiom and a least fixpoint rule, for each fixpoint connective sharp_gamma. Provided that each indexing formula gamma satisfies the syntactic criterion of being untied in x, we prove this axiom system to be complete. Second, addressing the general case, we prove the soundness and completeness of an extension K+ (Gamma) of K_sharp (Gamma). This extension is obtained via an effective procedure that, given an indexing formula gamma as input, returns a finite set of axioms and derivation rules for sharp_gamma, of size bounded by the length of gamma. Thus the axiom system K+ (Gamma) is finite whenever Gamma is finite.
We define the notion of rational closure in the context of Description Logics extended with a tipicality operator. We start from ALC+T, an extension of ALC with a typicality operator T: intuitively allowing to express concepts of the form T(C), meant to select the most normal instances of a concept C. The semantics we consider is based on rational model. But we further restrict the semantics to minimal models, that is to say, to models that minimise the rank of domain elements. We show that this semantics captures exactly a notion of rational closure which is a natural extension to Description Logics of Lehmann and Magidors original one. We also extend the notion of rational closure to the Abox component. We provide an ExpTime algorithm for computing the rational closure of an Abox and we show that it is sound and complete with respect to the minimal model semantics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا