Do you want to publish a course? Click here

On Rational Closure in Description Logics of Typicality

151   0   0.0 ( 0 )
 Added by Gian Luca Pozzato
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We define the notion of rational closure in the context of Description Logics extended with a tipicality operator. We start from ALC+T, an extension of ALC with a typicality operator T: intuitively allowing to express concepts of the form T(C), meant to select the most normal instances of a concept C. The semantics we consider is based on rational model. But we further restrict the semantics to minimal models, that is to say, to models that minimise the rank of domain elements. We show that this semantics captures exactly a notion of rational closure which is a natural extension to Description Logics of Lehmann and Magidors original one. We also extend the notion of rational closure to the Abox component. We provide an ExpTime algorithm for computing the rational closure of an Abox and we show that it is sound and complete with respect to the minimal model semantics.



rate research

Read More

In this work we describe preferential Description Logics of typicality, a nonmonotonic extension of standard Description Logics by means of a typicality operator T allowing to extend a knowledge base with inclusions of the form T(C) v D, whose intuitive meaning is that normally/typically Cs are also Ds. This extension is based on a minimal model semantics corresponding to a notion of rational closure, built upon preferential models. We recall the basic concepts underlying preferential Description Logics. We also present two extensions of the preferential semantics: on the one hand, we consider probabilistic extensions, based on a distributed semantics that is suitable for tackling the problem of commonsense concept combination, on the other hand, we consider other strengthening of the rational closure semantics and construction to avoid the so-called blocking of property inheritance problem.
We define a notion of rational closure for the logic SHIQ, which does not enjoys the finite model property, building on the notion of rational closure introduced by Lehmann and Magidor in [23]. We provide a semantic characterization of rational closure in SHIQ in terms of a preferential semantics, based on a finite rank characterization of minimal models. We show that the rational closure of a TBox can be computed in EXPTIME using entailment in SHIQ.
Predicate logic is the premier choice for specifying classes of relational structures. Homomorphisms are key to describing correspondences between relational structures. Questions concerning the interdependencies between these two means of characterizing (classes of) structures are of fundamental interest and can be highly non-trivial to answer. We investigate several problems regarding the homomorphism closure (homclosure) of the class of all (finite or arbitrary) models of logical sentences: membership of structures in a sentences homclosure; sentence homclosedness; homclosure characterizability in a logic; normal forms for homclosed sentences in certain logics. For a wide variety of fragments of first- and second-order predicate logic, we clarify these problems computational properties.
We investigate the decidability and computational complexity of conservative extensions and the related notions of inseparability and entailment in Horn description logics (DLs) with inverse roles. We consider both query conservative extensions, defined by requiring that the answers to all conjunctive queries are left unchanged, and deductive conservative extensions, which require that the entailed concept inclusions, role inclusions, and functionality assertions do not change. Upper bounds for query conservative extensions are particularly challenging because characterizations in terms of unbounded homomorphisms between universal models, which are the foundation of the standard approach to establishing decidability, fail in the presence of inverse roles. We resort to a characterization that carefully mixes unbounded and bounded homomorphisms and enables a decision procedure that combines tree automata and a mosaic technique. Our main results are that query conservative extensions are 2ExpTime-complete in all DLs between ELI and Horn-ALCHIF and between Horn-ALC and Horn-ALCHIF, and that deductive conservative extensions are 2ExpTime-complete in all DLs between ELI and ELHIF_bot. The same results hold for inseparability and entailment.
The idea of the Semantic Web is to annotate Web content and services with computer interpretable descriptions with the aim to automatize many tasks currently performed by human users. In the context of Web services, one of the most interesting tasks is their composition. In this paper we formalize this problem in the framework of a constructive description logic. In particular we propose a declarative service specification language and a calculus for service composition. We show by means of an example how this calculus can be used to define composed Web services and we discuss the problem of automatic service synthesis.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا