Do you want to publish a course? Click here

Paraconsistentization and many-valued logics

148   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper shows how to transform explosive many-valued systems into paraconsistent logics. We investigate especially the case of three-valued systems showing how paraconsistent three-valued logics can be obtained from them.



rate research

Read More

The logics RL, RP, and RG have been obtained by expanding Lukasiewicz logic L, product logic P, and Godel--Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in L, P, and G. Namely, RL is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules in RP, show their decidability, and characterize passive structural completeness for extensions of RP. Furthermore, structural completeness, hereditary structural completeness, and active structural completeness coincide for extensions of RP, and this is also the case for extensions of RG, where in turn passive structural completeness is characterized by the equivalent algebraic semantics having the joint embedding property. For nontrivial axiomatic extensions of RG we provide a base of admissible rules. We leave the problem open whether the variety of rational Godel algebras is Q-universal.
We consider model-theoretic properties related to the expressive power of three analogues of $L_{omega_1, omega}$ for metric structures. We give an example showing that one of these infinitary logics is strictly more expressive than the other two, but also show that all three have the same elementary equivalence relation for complete separable metric structures. We then prove that a continuous function on a complete separable metric structure is automorphism invariant if and only if it is definable in the more expressive logic. Several of our results are related to the existence of Scott sentences for complete separable metric structures.
We give a sufficient condition for Kripke completeness of modal logics enriched with the transitive closure modality. More precisely, we show that if a logic admits what we call definable filtration (ADF), then such an expansion of the logic is complete; in addition, has the finite model property, and again ADF. This argument can be iterated, and as an application we obtain the finite model property for PDL-like expansions of logics that ADF.
This paper is an attempt to solve the following problem: given a logic, how to turn it into a paraconsistent one? In other words, given a logic in which emph{ex falso quodlibet} holds, how to convert it into a logic not satisfying this principle? We use a framework provided by category theory in order to define a category of consequence structures. Then, we propose a functor to transform a logic not able to deal with contradictions into a paraconsistent one. Moreover, we study the case of paraconsistentization of propositional classical logic.
Let B be a commutative Bezout domain B and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class of B-modules. We analyse the definable sets in terms, on one hand, of the definable sets in the classes of modules over the localizations of B by the maximal ideals of B, and on the other hand, of the constructible subsets of MSpec(B). When B has good factorization, it allows us to derive decidability results for the class B-modules, in particular when B is the ring of algebraic integers or its intersection with real numbers or p-adic numbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا