No Arabic abstract
A lifespan face synthesis (LFS) model aims to generate a set of photo-realistic face images of a persons whole life, given only one snapshot as reference. The generated face image given a target age code is expected to be age-sensitive reflected by bio-plausible transformations of shape and texture, while being identity preserving. This is extremely challenging because the shape and texture characteristics of a face undergo separate and highly nonlinear transformations w.r.t. age. Most recent LFS models are based on generative adversarial networks (GANs) whereby age code conditional transformations are applied to a latent face representation. They benefit greatly from the recent advancements of GANs. However, without explicitly disentangling their latent representations into the texture, shape and identity factors, they are fundamentally limited in modeling the nonlinear age-related transformation on texture and shape whilst preserving identity. In this work, a novel LFS model is proposed to disentangle the key face characteristics including shape, texture and identity so that the unique shape and texture age transformations can be modeled effectively. This is achieved by extracting shape, texture and identity features separately from an encoder. Critically, two transformation modules, one conditional convolution based and the other channel attention based, are designed for modeling the nonlinear shape and texture feature transformations respectively. This is to accommodate their rather distinct aging processes and ensure that our synthesized images are both age-sensitive and identity preserving. Extensive experiments show that our LFS model is clearly superior to the state-of-the-art alternatives. Codes and demo are available on our project website: url{https://senhe.github.io/projects/iccv_2021_lifespan_face}.
We address the problem of single photo age progression and regression-the prediction of how a person might look in the future, or how they looked in the past. Most existing aging methods are limited to changing the texture, overlooking transformations in head shape that occur during the human aging and growth process. This limits the applicability of previous methods to aging of adults to slightly older adults, and application of those methods to photos of children does not produce quality results. We propose a novel multi-domain image-to-image generative adversarial network architecture, whose learned latent space models a continuous bi-directional aging process. The network is trained on the FFHQ dataset, which we labeled for ages, gender, and semantic segmentation. Fixed age classes are used as anchors to approximate continuous age transformation. Our framework can predict a full head portrait for ages 0-70 from a single photo, modifying both texture and shape of the head. We demonstrate results on a wide variety of photos and datasets, and show significant improvement over the state of the art.
Despite the remarkable progress in face recognition related technologies, reliably recognizing faces across ages still remains a big challenge. The appearance of a human face changes substantially over time, resulting in significant intra-class variations. As opposed to current techniques for age-invariant face recognition, which either directly extract age-invariant features for recognition, or first synthesize a face that matches target age before feature extraction, we argue that it is more desirable to perform both tasks jointly so that they can leverage each other. To this end, we propose a deep Age-Invariant Model (AIM) for face recognition in the wild with three distinct novelties. First, AIM presents a novel unified deep architecture jointly performing cross-age face synthesis and recognition in a mutual boosting way. Second, AIM achieves continuous face rejuvenation/aging with remarkable photorealistic and identity-preserving properties, avoiding the requirement of paired data and the true age of testing samples. Third, we develop effective and novel training strategies for end-to-end learning the whole deep architecture, which generates powerful age-invariant face representations explicitly disentangled from the age variation. Moreover, we propose a new large-scale Cross-Age Face Recognition (CAFR) benchmark dataset to facilitate existing efforts and push the frontiers of age-invariant face recognition research. Extensive experiments on both our CAFR and several other cross-age datasets (MORPH, CACD and FG-NET) demonstrate the superiority of the proposed AIM model over the state-of-the-arts. Benchmarking our model on one of the most popular unconstrained face recognition datasets IJB-C additionally verifies the promising generalizability of AIM in recognizing faces in the wild.
Kinship face synthesis is an interesting topic raised to answer questions like what will your future children look like?. Published approaches to this topic are limited. Most of the existing methods train models for one-versus-one kin relation, which only consider one parent face and one child face by directly using an auto-encoder without any explicit control over the resemblance of the synthesized face to the parent face. In this paper, we propose a novel method for controllable descendant face synthesis, which models two-versus-one kin relation between two parent faces and one child face. Our model consists of an inheritance module and an attribute enhancement module, where the former is designed for accurate control over the resemblance between the synthesized face and parent faces, and the latter is designed for control over age and gender. As there is no large scale database with father-mother-child kinship annotation, we propose an effective strategy to train the model without using the ground truth descendant faces. No carefully designed image pairs are required for learning except only age and gender labels of training faces. We conduct comprehensive experimental evaluations on three public benchmark databases, which demonstrates encouraging results.
Face image manipulation via three-dimensional guidance has been widely applied in various interactive scenarios due to its semantically-meaningful understanding and user-friendly controllability. However, existing 3D-morphable-model-based manipulation methods are not directly applicable to out-of-domain faces, such as non-photorealistic paintings, cartoon portraits, or even animals, mainly due to the formidable difficulties in building the model for each specific face domain. To overcome this challenge, we propose, as far as we know, the first method to manipulate faces in arbitrary domains using human 3DMM. This is achieved through two major steps: 1) disentangled mapping from 3DMM parameters to the latent space embedding of a pre-trained StyleGAN2 that guarantees disentangled and precise controls for each semantic attribute; and 2) cross-domain adaptation that bridges domain discrepancies and makes human 3DMM applicable to out-of-domain faces by enforcing a consistent latent space embedding. Experiments and comparisons demonstrate the superiority of our high-quality semantic manipulation method on a variety of face domains with all major 3D facial attributes controllable: pose, expression, shape, albedo, and illumination. Moreover, we develop an intuitive editing interface to support user-friendly control and instant feedback. Our project page is https://cassiepython.github.io/sigasia/cddfm3d.html.
Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GANs training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin. Code is available at https://github.com/yxuhan/IALS.