Do you want to publish a course? Click here

Lifespan Age Transformation Synthesis

145   0   0.0 ( 0 )
 Added by Roy Or-El
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We address the problem of single photo age progression and regression-the prediction of how a person might look in the future, or how they looked in the past. Most existing aging methods are limited to changing the texture, overlooking transformations in head shape that occur during the human aging and growth process. This limits the applicability of previous methods to aging of adults to slightly older adults, and application of those methods to photos of children does not produce quality results. We propose a novel multi-domain image-to-image generative adversarial network architecture, whose learned latent space models a continuous bi-directional aging process. The network is trained on the FFHQ dataset, which we labeled for ages, gender, and semantic segmentation. Fixed age classes are used as anchors to approximate continuous age transformation. Our framework can predict a full head portrait for ages 0-70 from a single photo, modifying both texture and shape of the head. We demonstrate results on a wide variety of photos and datasets, and show significant improvement over the state of the art.



rate research

Read More

A lifespan face synthesis (LFS) model aims to generate a set of photo-realistic face images of a persons whole life, given only one snapshot as reference. The generated face image given a target age code is expected to be age-sensitive reflected by bio-plausible transformations of shape and texture, while being identity preserving. This is extremely challenging because the shape and texture characteristics of a face undergo separate and highly nonlinear transformations w.r.t. age. Most recent LFS models are based on generative adversarial networks (GANs) whereby age code conditional transformations are applied to a latent face representation. They benefit greatly from the recent advancements of GANs. However, without explicitly disentangling their latent representations into the texture, shape and identity factors, they are fundamentally limited in modeling the nonlinear age-related transformation on texture and shape whilst preserving identity. In this work, a novel LFS model is proposed to disentangle the key face characteristics including shape, texture and identity so that the unique shape and texture age transformations can be modeled effectively. This is achieved by extracting shape, texture and identity features separately from an encoder. Critically, two transformation modules, one conditional convolution based and the other channel attention based, are designed for modeling the nonlinear shape and texture feature transformations respectively. This is to accommodate their rather distinct aging processes and ensure that our synthesized images are both age-sensitive and identity preserving. Extensive experiments show that our LFS model is clearly superior to the state-of-the-art alternatives. Codes and demo are available on our project website: url{https://senhe.github.io/projects/iccv_2021_lifespan_face}.
To minimize the effects of age variation in face recognition, previous work either extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features, called age-invariant face recognition (AIFR), or removes age variation by transforming the faces of different age groups into the same age group, called face age synthesis (FAS); however, the former lacks visual results for model interpretation while the latter suffers from artifacts compromising downstream recognition. Therefore, this paper proposes a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn age-invariant identity-related representation while achieving pleasing face synthesis. Specifically, we first decompose the mixed face feature into two uncorrelated components -- identity- and age-related feature -- through an attention mechanism, and then decorrelate these two components using multi-task training and continuous domain adaption. In contrast to the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, with a weight-sharing strategy to improve the age smoothness of synthesized faces. In addition, we collect and release a large cross-age face dataset with age and gender annotations to advance the development of the AIFR and FAS. Extensive experiments on five benchmark cross-age datasets demonstrate the superior performance of our proposed MTLFace over existing state-of-the-art methods for AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, showing competitive performance for face recognition in the wild. The source code and dataset are available at~url{https://github.com/Hzzone/MTLFace}.
Age estimation is a technique for predicting human ages from digital facial images, which analyzes a persons face image and estimates his/her age based on the year measure. Nowadays, intelligent age estimation and age synthesis have become particularly prevalent research topics in computer vision and face verification systems. Age synthesis is defined to render a facial image aesthetically with rejuvenating and natural aging effects on the persons face. Age estimation is defined to label a facial image automatically with the age group (year range) or the exact age (year) of the persons face. In this case study, we overview the existing models, popular techniques, system performances, and technical challenges related to the facial image-based age synthesis and estimation topics. The main goal of this review is to provide an easy understanding and promising future directions with systematic discussions.
We present a transformation-grounded image generation network for novel 3D view synthesis from a single image. Instead of taking a blank slate approach, we first explicitly infer the parts of the geometry visible both in the input and novel views and then re-cast the remaining synthesis problem as image completion. Specifically, we both predict a flow to move the pixels from the input to the novel view along with a novel visibility map that helps deal with occulsion/disocculsion. Next, conditioned on those intermediate results, we hallucinate (infer) parts of the object invisible in the input image. In addition to the new network structure, training with a combination of adversarial and perceptual loss results in a reduction in common artifacts of novel view synthesis such as distortions and holes, while successfully generating high frequency details and preserving visual aspects of the input image. We evaluate our approach on a wide range of synthetic and real examples. Both qualitative and quantitative results show our method achieves significantly better results compared to existing methods.
136 - Jian Zhao , Yu Cheng , Yi Cheng 2018
Despite the remarkable progress in face recognition related technologies, reliably recognizing faces across ages still remains a big challenge. The appearance of a human face changes substantially over time, resulting in significant intra-class variations. As opposed to current techniques for age-invariant face recognition, which either directly extract age-invariant features for recognition, or first synthesize a face that matches target age before feature extraction, we argue that it is more desirable to perform both tasks jointly so that they can leverage each other. To this end, we propose a deep Age-Invariant Model (AIM) for face recognition in the wild with three distinct novelties. First, AIM presents a novel unified deep architecture jointly performing cross-age face synthesis and recognition in a mutual boosting way. Second, AIM achieves continuous face rejuvenation/aging with remarkable photorealistic and identity-preserving properties, avoiding the requirement of paired data and the true age of testing samples. Third, we develop effective and novel training strategies for end-to-end learning the whole deep architecture, which generates powerful age-invariant face representations explicitly disentangled from the age variation. Moreover, we propose a new large-scale Cross-Age Face Recognition (CAFR) benchmark dataset to facilitate existing efforts and push the frontiers of age-invariant face recognition research. Extensive experiments on both our CAFR and several other cross-age datasets (MORPH, CACD and FG-NET) demonstrate the superiority of the proposed AIM model over the state-of-the-arts. Benchmarking our model on one of the most popular unconstrained face recognition datasets IJB-C additionally verifies the promising generalizability of AIM in recognizing faces in the wild.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا