Do you want to publish a course? Click here

Mobile Phone Location Data for Disasters: A Review from Natural Hazards and Epidemics

72   0   0.0 ( 0 )
 Added by Takahiro Yabe
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rapid urbanization and climate change trends are intertwined with complex interactions of various social, economic, and political factors. The increased trends of disaster risks have recently caused numerous events, ranging from unprecedented category 5 hurricanes in the Atlantic Ocean to the COVID-19 pandemic. While regions around the world face urgent demands to prepare for, respond to, and to recover from such disasters, large-scale location data collected from mobile phone devices have opened up novel approaches to tackle these challenges. Mobile phone location data have enabled us to observe, estimate, and model human mobility dynamics at an unprecedented spatio-temporal granularity and scale. The COVID-19 pandemic has spurred the use of mobile phone location data for pandemic and disaster response. However, there is a lack of a comprehensive review that synthesizes the last decade of work leveraging mobile phone location data and case studies of natural hazards and epidemics. We address this gap by summarizing the existing work, and pointing promising areas and future challenges for using data to support disaster response and recovery.



rate research

Read More

Today, 95% of the global population has 2G mobile phone coverage and the number of individuals who own a mobile phone is at an all time high. Mobile phones generate rich data on billions of people across different societal contexts and have in the last decade helped redefine how we do research and build tools to understand society. As such, mobile phone data has the potential to revolutionize how we tackle humanitarian problems, such as the many suffered by refugees all over the world. While promising, mobile phone data and the new computational approaches bring both opportunities and challenges. Mobile phone traces contain detailed information regarding peoples whereabouts, social life, and even financial standing. Therefore, developing and adopting strategies that open data up to the wider humanitarian and international development community for analysis and research while simultaneously protecting the privacy of individuals is of paramount importance. Here we outline the challenging situation of children on the move and actions UNICEF is pushing in helping displaced children and youth globally, and discuss opportunities where mobile phone data can be used. We identify three key challenges: data access, data and algorithmic bias, and operationalization of research, which need to be addressed if mobile phone data is to be successfully applied in humanitarian contexts.
Novel aspects of human dynamics and social interactions are investigated by means of mobile phone data. Using extensive phone records resolved in both time and space, we study the mean collective behavior at large scales and focus on the occurrence of anomalous events. We discuss how these spatiotemporal anomalies can be described using standard percolation theory tools. We also investigate patterns of calling activity at the individual level and show that the interevent time of consecutive calls is heavy-tailed. This finding, which has implications for dynamics of spreading phenomena in social networks, agrees with results previously reported on other human activities.
Statistics on migration flows are often derived from census data, which suffer from intrinsic limitations, including costs and infrequent sampling. When censuses are used, there is typically a time gap - up to a few years - between the data collection process and the computation and publication of relevant statistics. This gap is a significant drawback for the analysis of a phenomenon that is continuously and rapidly changing. Alternative data sources, such as surveys and field observations, also suffer from reliability, costs, and scale limitations. The ubiquity of mobile phones enables an accurate and efficient collection of up-to-date data related to migration. Indeed, passively collected data by the mobile network infrastructure via aggregated, pseudonymized Call Detail Records (CDRs) is of great value to understand human migrations. Through the analysis of mobile phone data, we can shed light on the mobility patterns of migrants, detect spontaneous settlements and understand the daily habits, levels of integration, and human connections of such vulnerable social groups. This Chapter discusses the importance of leveraging mobile phone data as an alternative data source to gather precious and previously unavailable insights on various aspects of migration. Also, we highlight pending challenges that would need to be addressed before we can effectively benefit from the availability of mobile phone data to help make better decisions that would ultimately improve millions of peoples lives.
Evaluating relative changes leads to additional insights which would remain hidden when only evaluating absolute changes. We analyze a dataset describing mobility of mobile phones in Austria before, during COVID-19 lock-down measures until recent. By applying compositional data analysis we show that formerly hidden information becomes available: we see that the elderly population groups increase relative mobility and that the younger groups especially on weekends also do not decrease their mobility as much as the others.
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing. It identifies key gaps and reasons why this kind of data is only scarcely used, although their value in similar epidemics has proven in a number of use cases. It presents ways to overcome these gaps and key recommendations for urgent action, most notably the establishment of mixed expert groups on national and regional level, and the inclusion and support of governments and public authorities early on. It is authored by a group of experienced data scientists, epidemiologists, demographers and representatives of mobile network operators who jointly put their work at the service of the global effort to combat the COVID-19 pandemic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا