Do you want to publish a course? Click here

Narrow quadrupolar surface lattice resonances and band reversal in vertical metal-insulator-metal gratings

75   0   0.0 ( 0 )
 Added by Guangyuan Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report narrow quadrupolar surface lattice resonances (SLRs) under normal incidence, and the observation, for the first time, of the band reversal effect of SLRs supported by a vertical metal-insulator-metal nanograting, which is embedded in a homogeneous dielectric environment. Simulation results show that under normal incidence, quadrupolar SLR with linewidth of 1~nm and high quality factor of 979 can be excited in the near-infrared regime, and that under oblique incidence, out-of-plane dipolar SLRs of relatively large quality factors (>=150) can be launched. By varying the incidence angle, the SLR wavelength can be continuously tuned over an extremely broadband range of 750 nm, covering most of the near-infrared regime, and the quality factor decreases exponentially. Remarkably, the resonance lineshape can also be dynamically tuned from an asymmetric Fano-shaped dip to a peak, a dip/peak pair, and a perfect symmetric Lorentzian peak, suggesting the appearance of the band reversal effect. We expect the high-Q SLRs with broadband tunability and tunable lineshapes will find potential applications in enhanced nanoscale light-matter interactions in nanolasers, nonlinear optics and sensing.



rate research

Read More

As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be produced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
Recently, metalenses which consist of metasurface arrays, have attracted attention due to their more condensed size in comparison with conventional lenses. In this paper, we propose a reconfigurable coding metasurface hybridized with vanadium dioxide (VO2) for wavefront manipulation at terahertz (THz) frequencies. At room temperature, the unit-cell can reflect as a 1 bit under linearly y polarized illuminated waves. Besides, when the temperature is increased, VO2 would be in a fully metallic state; therefore, unit-cell can act as a 0 reflection phase. Furthermore, by changing the unit-cells arrangements on a metalens surface, the proposed device can focus the incident beam at any position according to a particular design. Numerical simulations demonstrate that the designed VO2-assisted metasurface can generate one and multi-focal spot in reflection mode as expected. Also, theoretical results depict an excellent agreement with obtained simulation results. The presented metalens has notable potential in THz high-resolution imaging and optical coding.
Insulator-metal transition is investigated self-consistently on the frustrated Shastry-Sutherland lattice in the framework of Slave-Boson mean-field theory. Due to the presence of quasi-flat band structure characteristic, the system displays a spin-density-wave (SDW) insulating phase at the weak doping levels, which is robust against frustration, and it will be transited into an SDW metallic phase at high doping levels. As further increasing the doping, the temperature or the frustration on the diagonal linking bonds, the magnetic order $m$ will be monotonically suppressed, resulting in the appearance of a paramagnetic metallic phase. Although the Fermi surface of the SDW metallic phase may be immersed by temperature, the number of mobile charges is robust against temperature at weak doping levels.
We present a theoretical analysis of the effects of short range surface plasmon polariton excitation on sub-wavelength bridges in metal gratings. We show that localized resonances in thin metal bridges placed within the slit of a free-standing silver grating dramatically modify transmission spectra and boost absorption regardless of the periodicity of the grating. Additionally, the interference of multiple localized resonances makes it possible to tailor the absorption properties of ultrathin gratings, regardless of the apertures geometrical size. This tunable, narrow-band, enhanced-absorption mechanism triggered by resonant, short range surface plasmon polaritons may also enhance nonlinear optical processes like harmonic generation, in view of the large third-order susceptibility of metals.
Opto-mechanical interactions in planar photonic integrated circuits draw great interest in basic research and applications. However, opto-mechanics is practically absent in the most technologically significant photonics platform: silicon on insulator. Previous demonstrations required the under-etching and suspension of silicon structures. Here we present surface acoustic wave-photonic devices in silicon on insulator, up to 8 GHz frequency. Surface waves are launched through absorption of modulated pump light in metallic gratings and thermoelastic expansion. The surface waves are detected through photo-elastic modulation of an optical probe in standard race-track resonators. Devices do not involve piezo-electric actuation, suspension of waveguides or hybrid material integration. Wavelength conversion of incident microwave signals and acoustic true time delays up to 40 ns are demonstrated on-chip. Lastly, discrete-time microwave-photonic filters with up to six taps and 20 MHz wide passbands are realized using acoustic delays. The concept is suitable for integrated microwave-photonics signal processing
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا