No Arabic abstract
Recently, metalenses which consist of metasurface arrays, have attracted attention due to their more condensed size in comparison with conventional lenses. In this paper, we propose a reconfigurable coding metasurface hybridized with vanadium dioxide (VO2) for wavefront manipulation at terahertz (THz) frequencies. At room temperature, the unit-cell can reflect as a 1 bit under linearly y polarized illuminated waves. Besides, when the temperature is increased, VO2 would be in a fully metallic state; therefore, unit-cell can act as a 0 reflection phase. Furthermore, by changing the unit-cells arrangements on a metalens surface, the proposed device can focus the incident beam at any position according to a particular design. Numerical simulations demonstrate that the designed VO2-assisted metasurface can generate one and multi-focal spot in reflection mode as expected. Also, theoretical results depict an excellent agreement with obtained simulation results. The presented metalens has notable potential in THz high-resolution imaging and optical coding.
Multifocal lens, which focus incident light at multiple foci, are widely used in imaging systems and optical communications. However, for the traditional design strategy, it combines several lenses that have different focal points into a planar integrated unit, resulting a low imaging quality due to the high background noise. Here, we propose two kinds of multifocal metalens with Au nanoslits arranged in an elliptical and a hyperbolic shape, which are able to effectively focus incident light at all of the foci with constructive interference, and extremely decrease the background noise and improve the lens imaging performance at the nanoscale. We further demonstrate that, the proposed metalens can possess a broadband operation wavelength changed from 600 nm to 900 nm, with its dual-polarity actively controlled by the incident circular polarization lights. With great agreement between the experimental and simulation results, our proposed conic-shaped metalens provides a significant potential for the future integrated nanophotonic device.
Dynamically switchable half-/quarter-wave plates have recently been the focus in the terahertz regime. Conventional design philosophy leads to multilayer metamaterials or narrowband metasurfaces. Here we propose a novel design philosophy and a VO2-metal hybrid metasurface for achieving broadband dynamically switchable half-/quarter-wave plate (HWP/QWP) based on the transition from the overdamped to the underdamped resonance. Results show that, by varying the VO2 conductivity by three orders of magnitude, the proposed metasurfaces function can be switched between an HWP with polarization conversion ratio larger than 96% and a QWP with ellipticity close to -1 over the broad working band of 0.8-1.2 THz. We expect that the proposed design philosophy will advance the engineering of metasurfaces for dynamically switchable functionalities beyond the terahertz regime.
As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be produced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
Erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whisper galley single mode laser (WGSML) by making use of a pair of coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whisper gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, WGSMLs output power increased and the central wavelength can be changed from 1560.30 nm to 1560.40 nm. Whats more, 1560.60 nm and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.
Modern scattering-type scanning near-field optical microscopy (s-SNOM) has become an indispensable tool in material research. However, as the s-SNOM technique marches into the far-infrared (IR) and terahertz (THz) regimes, emerging experiments sometimes produce puzzling results. For example, anomalies in the near-field optical contrast have been widely reported. In this Letter, we systematically investigate a series of extreme subwavelength metallic nanostructures via s-SNOM near-field imaging in the GHz to THz frequency range. We find that the near-field material contrast is greatly impacted by the lateral size of the nanostructure, while the spatial resolution is practically independent of it. The contrast is also strongly affected by the connectivity of the metallic structures to a larger metallic ground plane. The observed effect can be largely explained by a quasi-electrostatic analysis. We also compare the THz s-SNOM results to those of the mid-IR regime, where the size-dependence becomes significant only for smaller structures. Our results reveal that the quantitative analysis of the near-field optical material contrasts in the long-wavelength regime requires a careful assessment of the size and configuration of metallic (optically conductive) structures.