Do you want to publish a course? Click here

Exploiting BERT For Multimodal Target Sentiment Classification Through Input Space Translation

86   0   0.0 ( 0 )
 Added by Zaid Khan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multimodal target/aspect sentiment classification combines multimodal sentiment analysis and aspect/target sentiment classification. The goal of the task is to combine vision and language to understand the sentiment towards a target entity in a sentence. Twitter is an ideal setting for the task because it is inherently multimodal, highly emotional, and affects real world events. However, multimodal tweets are short and accompanied by complex, possibly irrelevant images. We introduce a two-stream model that translates images in input space using an object-aware transformer followed by a single-pass non-autoregressive text generation approach. We then leverage the translation to construct an auxiliary sentence that provides multimodal information to a language model. Our approach increases the amount of text available to the language model and distills the object-level information in complex images. We achieve state-of-the-art performance on two multimodal Twitter datasets without modifying the internals of the language model to accept multimodal data, demonstrating the effectiveness of our translation. In addition, we explain a failure mode of a popular approach for aspect sentiment analysis when applied to tweets. Our code is available at textcolor{blue}{url{https://github.com/codezakh/exploiting-BERT-thru-translation}}.



rate research

Read More

This paper addresses the problem of simultaneous machine translation (SiMT) by exploring two main concepts: (a) adaptive policies to learn a good trade-off between high translation quality and low latency; and (b) visual information to support this process by providing additional (visual) contextual information which may be available before the textual input is produced. For that, we propose a multimodal approach to simultaneous machine translation using reinforcement learning, with strategies to integrate visual and textual information in both the agent and the environment. We provide an exploration on how different types of visual information and integration strategies affect the quality and latency of simultaneous translation models, and demonstrate that visual cues lead to higher quality while keeping the latency low.
Attention-based long short-term memory (LSTM) networks have proven to be useful in aspect-level sentiment classification. However, due to the difficulties in annotating aspect-level data, existing public datasets for this task are all relatively small, which largely limits the effectiveness of those neural models. In this paper, we explore two approaches that transfer knowledge from document- level data, which is much less expensive to obtain, to improve the performance of aspect-level sentiment classification. We demonstrate the effectiveness of our approaches on 4 public datasets from SemEval 2014, 2015, and 2016, and we show that attention-based LSTM benefits from document-level knowledge in multiple ways.
83 - Fang Ma , Chen Zhang , Dawei Song 2021
Aspect sentiment classification (ASC) aims at determining sentiments expressed towards different aspects in a sentence. While state-of-the-art ASC models have achieved remarkable performance, they are recently shown to suffer from the issue of robustness. Particularly in two common scenarios: when domains of test and training data are different (out-of-domain scenario) or test data is adversarially perturbed (adversarial scenario), ASC models may attend to irrelevant words and neglect opinion expressions that truly describe diverse aspects. To tackle the challenge, in this paper, we hypothesize that position bias (i.e., the words closer to a concerning aspect would carry a higher degree of importance) is crucial for building more robust ASC models by reducing the probability of mis-attending. Accordingly, we propose two mechanisms for capturing position bias, namely position-biased weight and position-biased dropout, which can be flexibly injected into existing models to enhance representations for classification. Experiments conducted on out-of-domain and adversarial datasets demonstrate that our proposed approaches largely improve the robustness and effectiveness of current models.
Modern pre-trained language models are mostly built upon backbones stacking self-attention and feed-forward layers in an interleaved order. In this paper, beyond this stereotyped layer pattern, we aim to improve pre-trained models by exploiting layer variety from two aspects: the layer type set and the layer order. Specifically, besides the original self-attention and feed-forward layers, we introduce convolution into the layer type set, which is experimentally found beneficial to pre-trained models. Furthermore, beyond the original interleaved order, we explore more layer orders to discover more powerful architectures. However, the introduced layer variety leads to a large architecture space of more than billions of candidates, while training a single candidate model from scratch already requires huge computation cost, making it not affordable to search such a space by directly training large amounts of candidate models. To solve this problem, we first pre-train a supernet from which the weights of all candidate models can be inherited, and then adopt an evolutionary algorithm guided by pre-training accuracy to find the optimal architecture. Extensive experiments show that LV-BERT model obtained by our method outperforms BERT and its variants on various downstream tasks. For example, LV-BERT-small achieves 79.8 on the GLUE testing set, 1.8 higher than the strong baseline ELECTRA-small.
Extensive research on target-dependent sentiment classification (TSC) has led to strong classification performances in domains where authors tend to explicitly express sentiment about specific entities or topics, such as in reviews or on social media. We investigate TSC in news articles, a much less researched domain, despite the importance of news as an essential information source in individual and societal decision making. This article introduces NewsTSC, a manually annotated dataset to explore TSC on news articles. Investigating characteristics of sentiment in news and contrasting them to popular TSC domains, we find that sentiment in the news is expressed less explicitly, is more dependent on context and readership, and requires a greater degree of interpretation. In an extensive evaluation, we find that the state of the art in TSC performs worse on news articles than on other domains (average recall AvgRec = 69.8 on NewsTSC compared to AvgRev = [75.6, 82.2] on established TSC datasets). Reasons include incorrectly resolved relation of target and sentiment-bearing phrases and off-context dependence. As a major improvement over previous news TSC, we find that BERTs natural language understanding capabilities capture the less explicit sentiment used in news articles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا