Do you want to publish a course? Click here

Adversarial Data Augmentation for Disordered Speech Recognition

111   0   0.0 ( 0 )
 Added by Zengrui Jin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Automatic recognition of disordered speech remains a highly challenging task to date. The underlying neuro-motor conditions, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of impaired speech required for ASR system development. To this end, data augmentation techniques play a vital role in current disordered speech recognition systems. In contrast to existing data augmentation techniques only modifying the speaking rate or overall shape of spectral contour, fine-grained spectro-temporal differences between disordered and normal speech are modelled using deep convolutional generative adversarial networks (DCGAN) during data augmentation to modify normal speech spectra into those closer to disordered speech. Experiments conducted on the UASpeech corpus suggest the proposed adversarial data augmentation approach consistently outperformed the baseline augmentation methods using tempo or speed perturbation on a state-of-the-art hybrid DNN system. An overall word error rate (WER) reduction up to 3.05% (9.7% relative) was obtained over the baseline system using no data augmentation. The final learning hidden unit contribution (LHUC) speaker adapted system using the best adversarial augmentation approach gives an overall WER of 25.89% on the UASpeech test set of 16 dysarthric speakers.



rate research

Read More

Although end-to-end automatic speech recognition (E2E ASR) has achieved great performance in tasks that have numerous paired data, it is still challenging to make E2E ASR robust against noisy and low-resource conditions. In this study, we investigated data augmentation methods for E2E ASR in distant-talk scenarios. E2E ASR models are trained on the series of CHiME challenge datasets, which are suitable tasks for studying robustness against noisy and spontaneous speech. We propose to use three augmentation methods and thier combinations: 1) data augmentation using text-to-speech (TTS) data, 2) cycle-consistent generative adversarial network (Cycle-GAN) augmentation trained to map two different audio characteristics, the one of clean speech and of noisy recordings, to match the testing condition, and 3) pseudo-label augmentation provided by the pretrained ASR module for smoothing label distributions. Experimental results using the CHiME-6/CHiME-4 datasets show that each augmentation method individually improves the accuracy on top of the conventional SpecAugment; further improvements are obtained by combining these approaches. We achieved 4.3% word error rate (WER) reduction, which was more significant than that of the SpecAugment, when we combine all three augmentations for the CHiME-6 task.
99 - Linghui Meng , Jin Xu , Xu Tan 2021
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spectrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.
In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesis system. However, their quality is not satisfactory, especially when the amount of training data is insufficient. To address this problem, we propose an effective data augmentation method using a well-designed AR TTS system. In this method, large-scale synthetic corpora including text-waveform pairs with phoneme duration are generated by the AR TTS system and then used to train the target non-AR model. Perceptual listening test results showed that the proposed method significantly improved the quality of the non-AR TTS system. In particular, we augmented five hours of a training database to 179 hours of a synthetic one. Using these databases, our TTS system consisting of a FastSpeech 2 acoustic model with a Parallel WaveGAN vocoder achieved a mean opinion score of 3.74, which is 40% higher than that achieved by the conventional method.
Varying data augmentation policies and regularization over the course of optimization has led to performance improvements over using fixed values. We show that population based training is a useful tool to continuously search those hyperparameters, within a fixed budget. This greatly simplifies the experimental burden and computational cost of finding such optimal schedules. We experiment in speech recognition by optimizing SpecAugment this way, as well as dropout. It compares favorably to a baseline that does not change those hyperparameters over the course of training, with an 8% relative WER improvement. We obtain 5.18% word error rate on LibriSpeechs test-other.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا