Do you want to publish a course? Click here

TTS-by-TTS: TTS-driven Data Augmentation for Fast and High-Quality Speech Synthesis

105   0   0.0 ( 0 )
 Added by Min-Jae Hwang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesis system. However, their quality is not satisfactory, especially when the amount of training data is insufficient. To address this problem, we propose an effective data augmentation method using a well-designed AR TTS system. In this method, large-scale synthetic corpora including text-waveform pairs with phoneme duration are generated by the AR TTS system and then used to train the target non-AR model. Perceptual listening test results showed that the proposed method significantly improved the quality of the non-AR TTS system. In particular, we augmented five hours of a training database to 179 hours of a synthetic one. Using these databases, our TTS system consisting of a FastSpeech 2 acoustic model with a Parallel WaveGAN vocoder achieved a mean opinion score of 3.74, which is 40% higher than that achieved by the conventional method.



rate research

Read More

225 - Liping Chen , Yan Deng , Xi Wang 2021
This paper presents a speech BERT model to extract embedded prosody information in speech segments for improving the prosody of synthesized speech in neural text-to-speech (TTS). As a pre-trained model, it can learn prosody attributes from a large amount of speech data, which can utilize more data than the original training data used by the target TTS. The embedding is extracted from the previous segment of a fixed length in the proposed BERT. The extracted embedding is then used together with the mel-spectrogram to predict the following segment in the TTS decoder. Experimental results obtained by the Transformer TTS show that the proposed BERT can extract fine-grained, segment-level prosody, which is complementary to utterance-level prosody to improve the final prosody of the TTS speech. The objective distortions measured on a single speaker TTS are reduced between the generated speech and original recordings. Subjective listening tests also show that the proposed approach is favorably preferred over the TTS without the BERT prosody embedding module, for both in-domain and out-of-domain applications. For Microsoft professional, single/multiple speakers and the LJ Speaker in the public database, subjective preference is similarly confirmed with the new BERT prosody embedding. TTS demo audio samples are in https://judy44chen.github.io/TTSSpeechBERT/.
Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generate mel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trained without guidance from autoregressive TTS models as their external aligners. In this work, we propose Glow-TTS, a flow-based generative model for parallel TTS that does not require any external aligner. By combining the properties of flows and dynamic programming, the proposed model searches for the most probable monotonic alignment between text and the latent representation of speech on its own. We demonstrate that enforcing hard monotonic alignments enables robust TTS, which generalizes to long utterances, and employing generative flows enables fast, diverse, and controllable speech synthesis. Glow-TTS obtains an order-of-magnitude speed-up over the autoregressive model, Tacotron 2, at synthesis with comparable speech quality. We further show that our model can be easily extended to a multi-speaker setting.
Attention based neural TTS is elegant speech synthesis pipeline and has shown a powerful ability to generate natural speech. However, it is still not robust enough to meet the stability requirements for industrial products. Besides, it suffers from slow inference speed owning to the autoregressive generation process. In this work, we propose FeatherTTS, a robust and efficient attention-based neural TTS system. Firstly, we propose a novel Gaussian attention which utilizes interpretability of Gaussian attention and the strict monotonic property in TTS. By this method, we replace the commonly used stop token prediction architecture with attentive stop prediction. Secondly, we apply block sparsity on the autoregressive decoder to speed up speech synthesis. The experimental results show that our proposed FeatherTTS not only nearly eliminates the problem of word skipping, repeating in particularly hard texts and keep the naturalness of generated speech, but also speeds up acoustic feature generation by 3.5 times over Tacotron. Overall, the proposed FeatherTTS can be $35$x faster than real-time on a single CPU.
In recent years, Text-To-Speech (TTS) has been used as a data augmentation technique for speech recognition to help complement inadequacies in the training data. Correspondingly, we investigate the use of a multi-speaker TTS system to synthesize speech in support of speaker recognition. In this study we focus the analysis on tasks where a relatively small number of speakers is available for training. We observe on our datasets that TTS synthesized speech improves cross-domain speaker recognition performance and can be combined effectively with multi-style training. Additionally, we explore the effectiveness of different types of text transcripts used for TTS synthesis. Results suggest that matching the textual content of the target domain is a good practice, and if that is not feasible, a transcript with a sufficiently large vocabulary is recommended.
Previous work on speaker adaptation for end-to-end speech synthesis still falls short in speaker similarity. We investigate an orthogonal approach to the current speaker adaptation paradigms, speaker augmentation, by creating artificial speakers and by taking advantage of low-quality data. The base Tacotron2 model is modified to account for the channel and dialect factors inherent in these corpora. In addition, we describe a warm-start training strategy that we adopted for Tacotron2 training. A large-scale listening test is conducted, and a distance metric is adopted to evaluate synthesis of dialects. This is followed by an analysis on synthesis quality, speaker and dialect similarity, and a remark on the effectiveness of our speaker augmentation approach. Audio samples are available online.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا