Do you want to publish a course? Click here

$Lambda$ polarizing fragmentation function from Belle $e^+e^-$ data

140   0   0.0 ( 0 )
 Added by Umberto D'Alesio
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Experimental data from Belle Collaboration for the transverse polarization of $Lambda$s measured in $e^+ e^-$ annihilation processes are used to extract the polarizing fragmentation function (FF) within a TMD approach. We consider both associated and inclusive $Lambda$ production, showing a quite consistent scenario. Good separation in flavor is obtained, leading to four independent FFs. Predictions for SIDIS processes at the EIC, crucial for understanding their universality and evolution properties, are also presented.



rate research

Read More

We present a thorough phenomenological analysis of the experimental data from Belle Collaboration for the transverse $Lambda$ and $barLambda$ polarisation, measured in $e^+e^-$ annihilation processes, for the case of inclusive (plus a jet) and associated production with a light charged hadron. This allows for the first ever extraction of the quark polarising fragmentation function for a $Lambda$ hyperon, a transverse momentum dependent distribution giving the probability that an unpolarised quark fragments into a transversely polarised spin-1/2 hadron.
The surprising polarisation of Lambdas and other hyperons measured in many unpolarised hadronic processes, p N --> Lambda X, has been a long standing challenge for QCD phenomenology. One possible explanation was suggested, related to non perturbative properties of the quark hadronisation process, and encoded in the so-called Polarising Fragmentation Function (PFF). Recent Belle data have shown a non zero Lambda polarisation also in unpolarised e+ e- processes, e+ e- --> Lambda X and e+ e- --> Lambda h X. We consider the single inclusive case and the role of the PFFs. Adopting a simplified kinematics it is shown how they can originate a polarisation P_Lambda different from 0 and give explicit expressions for it in terms of the PFFs. Although the Belle data do not allow yet, in our approach, an extraction of the PFFs, some clear predictions are given, suggesting crucial measurements, and estimates of P_Lambda are computed, in qualitative agreement with the Belle data.
We report on the first extraction of interference fragmentation functions from the semi-inclusive production of two hadron pairs in back-to-back jets in e+e- annihilation. A nonzero asymmetry in the correlation of azimuthal orientations of opposite pi+pi- pairs is related to the transverse polarization of fragmenting quarks through a significant polarized dihadron fragmentation function. Extraction of the latter requires the knowledge of its unpolarized counterpart, the probability density for a quark to fragment in a pi+pi- pair. Since data for the unpolarized cross section are missing, we extract the unpolarized dihadron fragmentation function from a Monte Carlo simulation of the cross section.
We report the first observation of the spontaneous polarization of $Lambda$ and $bar{Lambda}$ hyperons transverse to the production plane in $e^+e^-$ annihilation, which is attributed to the effect arising from a polarizing fragmentation function. For inclusive $Lambda/bar{Lambda}$ production, we also report results with subtracted feed-down contributions from $Sigma^0$ and charm. This measurement uses a dataset of 800.4 fb$^{-1}$ collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV. We observe a significant polarization that rises with the fractional energy carried by the $Lambda/bar{Lambda}$ hyperon.
We report the first observation of the polarization of $Lambda/bar{Lambda}$ hyperons transverse to its production plane in $e^+e^-$ annihilation. We observe a significant polarization that rises with the fractional energy carried by the hyperon as well as its transverse momentum. To define the production plane, we use the direction of the hyperon momentum together with either the thrust axis in the event or the momentum vector of a hadron in the opposite hemisphere. Furthermore, we investigate the contributions to the hyperon polarization from the feed-down from $Sigma^0/bar{Sigma}^0$ and $Lambda_c^{pm}$ decays. This measurement uses a dataset of 800.4~fb$^{-1}$ collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا