Do you want to publish a course? Click here

Observation of Transverse $Lambda/bar{Lambda}$ Hyperon Polarization in $e^+e^-$ Annihilation at Belle

254   0   0.0 ( 0 )
 Added by Yinghui Guan
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We report the first observation of the polarization of $Lambda/bar{Lambda}$ hyperons transverse to its production plane in $e^+e^-$ annihilation. We observe a significant polarization that rises with the fractional energy carried by the hyperon as well as its transverse momentum. To define the production plane, we use the direction of the hyperon momentum together with either the thrust axis in the event or the momentum vector of a hadron in the opposite hemisphere. Furthermore, we investigate the contributions to the hyperon polarization from the feed-down from $Sigma^0/bar{Sigma}^0$ and $Lambda_c^{pm}$ decays. This measurement uses a dataset of 800.4~fb$^{-1}$ collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV.



rate research

Read More

We report the first observation of the spontaneous polarization of $Lambda$ and $bar{Lambda}$ hyperons transverse to the production plane in $e^+e^-$ annihilation, which is attributed to the effect arising from a polarizing fragmentation function. For inclusive $Lambda/bar{Lambda}$ production, we also report results with subtracted feed-down contributions from $Sigma^0$ and charm. This measurement uses a dataset of 800.4 fb$^{-1}$ collected by the Belle experiment at or near a center-of-mass energy of 10.58 GeV. We observe a significant polarization that rises with the fractional energy carried by the $Lambda/bar{Lambda}$ hyperon.
We make a systematic study of $Lambda$ hyperon polarizations in unpolarized lepton induced semi-inclusive reactions such as $e^-Nto e^-Lambda X$ and $e^+e^-toLambda h X$. We present the general form of cross sections in terms of structure functions obtained from a general kinematic analysis. This already shows that the produced hyperons can be polarized in three orthogonal directions, i.e., the longitudinal direction along the hyperon momentum, the normal direction of the production plane, and the transverse direction in the production plane. We present the parton model results at the leading twist and leading order in perturbative QCD and provide the expressions for these structure functions and polarizations in terms of parton distribution functions and fragmentation functions. We emphasize in particular that by studying the longitudinal polarization and the transverse polarization in the production plane, we can extract the corresponding chiral-odd fragmentation functions $H_{1Lq}^{perpLambda}$, $H_{1Tq}^{Lambda}$ and $H_{1Tq}^{perpLambda}$. We also present numerical results of rough estimates utilizing available parameterizations of fragmentation functions and approximations. We discuss how to measure these polarizations and point out in particular that they can be carried out in future EIC and/or $e^+e^-$ annihilation experiments such as Belle.
In this paper we study transverse polarization of $Lambda$ hyperons in single-inclusive leptonic annihilation. We show that when the transverse momentum of the $Lambda$ baryon is measured with respect to the thrust axis, a transverse momentum dependent (TMD) factorization formalism is required and the polarization is generated by the TMD polarizing fragmentation function (TMD PFF), $D_{1T}^perp$. However, when the transverse momentum of the $Lambda$ baryon is measured with respect to the momentum of the initial leptons, a collinear twist-3 formalism is required and the polarization is generated by the intrinsic collinear twist-3 fragmentation function $D_{T}$. Thus while these measurements differ from one another only by a change in the measurement axis, they probe different distribution functions. Recently, Belle measured a significant polarization in single-inclusive $Lambda$ baryon production as a function of the transverse momentum with respect to the thrust axis. However, this data can in principle be re-analyzed to measure the polarization as a function of the transverse momentum of the $Lambda$ baryon with respect to the lepton pair. This observable could be the first significant probe of the function, $D_{T}$. In this paper, we first develop a TMD formalism for $Lambda$ polarization; we then present a recent twist-3 formalism that was established to describe $Lambda$ polarization. Using the TMD formalism, we demonstrate that the $Lambda$ polarization at OPAL and Belle can be described using the twist-2 TMD factorization formalism. Finally, we make a theoretical prediction for this polarization in the collinear twist-3 formalism at Belle.
Experimental data from Belle Collaboration for the transverse polarization of $Lambda$s measured in $e^+ e^-$ annihilation processes are used to extract the polarizing fragmentation function (FF) within a TMD approach. We consider both associated and inclusive $Lambda$ production, showing a quite consistent scenario. Good separation in flavor is obtained, leading to four independent FFs. Predictions for SIDIS processes at the EIC, crucial for understanding their universality and evolution properties, are also presented.
195 - A. Vossen , R. Seidl , I. Adachi 2011
The interference fragmentation function translates the fragmentation of a quark with a transverse projection of the spin into an azimuthal asymmetry of two final-state hadrons. In e+e- annihilation the product of two interference fragmentation functions is measured. We report nonzero asymmetries for pairs of charge-ordered pi+pi- pairs, which indicate a significant interference fragmentation function in this channel. The results are obtained from a 672 fb-1 data sample that contains 711 times 106 pi+pi- pairs and was collected at and near the ?(4S) resonance, with the Belle detector at the KEKB asymmetric-energy e+e- collider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا