No Arabic abstract
Using viscoelastic mass/spring model simulations, we explore tidal evolution and migration of compact binary asteroid systems. We find that after the secondary is captured into a spin-synchronous state, non-principal axis rotation in the secondary can be long-lived. The secondarys long axis can remain approximately aligned along the vector connecting secondary to primary while the secondary rocks back and forth about its long axis. Inward orbital semi-major axis migration can also resonantly excite non-principal axis rotation. By estimating solar radiation forces on triangular surface meshes, we show that the magnitude of the BYORP effect induced torque is sensitive to the secondarys spin state. Non-principal axis rotation within the 1:1 spin-orbit resonance can reduce the BYORP torque or cause frequent reversals in its direction.
Lightcurve observations of asteroids and bare cometary nuclei are the most widely used observational tool to derive the rotational parameters. Therefore, an in-depth understanding of how component periods of dynamically excited non-principal axis (NPA) rotators manifest in lightcurves is a crucial step in this process. We investigated this with the help of numerically generated lightcurves of NPA rotators with component periods known a priori. The component periods of NPA rotation were defined in terms of two widely used yet complementary conventions. We derive the relationships correlating the component rotation periods in the two conventions. These relationships were then used to interpret the periodicity signatures present in the simulated lightcurves and rationalize them in either convention.
Context. The study of non-principal axis (NPA) rotators can provide important clues to the evolution of the spin state of asteroids. However, so far, very few studies have focused on NPA-rotating main-belt asteroids (MBAs). One of MBAs that are known to be in an excited rotation state is asteroid (5247) Krylov. Aims. By using disk-integrated photometric data, we construct a physical model of (5247) Krylov including shape and spin state. Methods. We apply the light curve convex inversion method employing optical light curves obtained by using ground-based telescopes in three apparitions during 2006, 2016, and 2017, along with infrared light curves obtained by the Wide-field Infrared Survey Explorer (WISE) satellite in 2010. Results. Asteroid (5247)~Krylov is spinning in a short axis mode (SAM) characterized by rotation and precession periods of 368.7 hr and 67.27 hr, respectively. The angular momentum vector orientation of Krylov is found to be $lambda_{L} = 298^circ$ and $beta_{L} = -58^circ$. The ratio of the rotational kinetic energy to the basic spin state energy $E/E_{0} simeq 1.02$ shows that the (5247) Krylov is about 2% excited state compared to the Principal Axis (PA) rotation state. The shape of (5247) Krylov can be approximated by an elongated prolate ellipsoid with a ratio of moments of inertia of $I_{a}:I_{b}:I_{c}=0.36:0.96:1$. This is the first physical model of NPA rotator among MBAs. The physical processes that led to the current NPA rotation cannot be unambiguously reconstructed.
We obtained thorough photometric observations of two binary near-Earth asteroids (66391) Moshup = 1999 KW4 and (88710) 2001 SL9 taken from 2000 to 2019 and derived physical and dynamical properties of the binary systems. We found that the data for 1999 KW4 are inconsistent with a constant orbital period and we obtained unique solution with a quadratic drift of the mean anomaly of the satellite of -0.65 +/- 0.16 deg/yr2 (all quoted uncertainties are 3sigma). This means that the semimajor axis of the mutual orbit of the components of this binary system increases in time with a mean rate of 1.2 +/- 0.3 cm/yr. The data for 2001 SL9 are also inconsistent with a constant orbital period and we obtained two solutions for the quadratic drift of the mean anomaly: 2.8 +/- 0.2 and 5.2 +/- 0.2 deg/yr2, implying that the semimajor axis of the mutual orbit of the components decreases in time with a mean rate of -2.8 +/- 0.2 or -5.1 +/- 0.2 cm/yr for the two solutions, respectively. The expanding orbit of 1999 KW4 may be explained by mutual tides interplaying with binary YORP (BYORP) effect (McMahon and Scheeres, 2010). However, a modeling of the BYORP drift using radar-derived shapes of the binary components predicted a much higher value of the orbital drift than the observed one. It suggests that either the radar-derived shape model of the secondary is inadequate for computing the BYORP effect, or the present theory of BYORP overestimates it. It is possible that the BYORP coefficient has instead an opposite sign than predicted; in that case, the system may be moving into an equilibrium between the BYORP and the tides. In the case of 2001 SL9, the BYORP effect is the only known physical mechanism that can cause the inward drift of its mutual orbit.
In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14$^{+0.09}_{-0.06}$ (all uncertainties are reported as 3-$sigma$ range) we determine (average albedo of S-types is 0.197 $pm$ 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 $pm$ 0.0001 h, is close to circular, and has pole coordinates within 7 deg. of (225, +86) in ECJ2000, implying a low obliquity of 1.5 deg. The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4$^{+2.5}_{-1.2}$ km and 3.6$^{+0.7}_{-0.3}$ km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be $2.91^{+1.72}_{-2.01}$ g.cm$^{-3}$, lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry, 2012, P&SS 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g, LBT, ALMA).
So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings which were separately integrated. In this statistical study, several double star configurations with a G-type star as primary are investigated. Our results show that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result into a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star can not only favor a faster depletion of our disk of planetesimals but can also bring 4 -- 5 times more water into the whole HZ.