Do you want to publish a course? Click here

The small binary asteroid (939) Isberga

155   0   0.0 ( 0 )
 Added by Benoit Carry
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14$^{+0.09}_{-0.06}$ (all uncertainties are reported as 3-$sigma$ range) we determine (average albedo of S-types is 0.197 $pm$ 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 $pm$ 0.0001 h, is close to circular, and has pole coordinates within 7 deg. of (225, +86) in ECJ2000, implying a low obliquity of 1.5 deg. The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4$^{+2.5}_{-1.2}$ km and 3.6$^{+0.7}_{-0.3}$ km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be $2.91^{+1.72}_{-2.01}$ g.cm$^{-3}$, lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry, 2012, P&SS 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g, LBT, ALMA).



rate research

Read More

We report on the results of a six-month photometric study of the main-belt binary C-type asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermiones physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis et al., (2005). A new effective diameter of 187 +/- 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 +0.5/-0.2 g cm-3. We infer a macroscopic porosity of ~33 +5/-20%.
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektors system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.
93 - B. Yang , J. Hanus , B. Carry 2020
Asteroid (31) Euphrosyne is one of the biggest objects in the asteroid main belt and the Euphrosyne family occupies a highly inclined region in the outer main belt and contains a remarkably large number of members, which is interpreted as an outcome of a disruptive cratering event. The goals of this adaptive-optics imaging study were threefold: to characterize the shape of Euphrosyne, to constrain its density, and to search for the large craters that may be associated with the family formation event. We obtained disk-resolved images of Euphrosyne using SPHERE/ZIMPOL at ESOs 8.2-m VLT as part of our large program (ID: 199.C-0074, PI: Vernazza). We reconstructed its 3D-shape using the adam shape modeling algorithm based on the SPHERE images and the available lightcurves of this asteroid. We analyzed the dynamics of the satellite with the genoid meta-heuristic algorithm. Finally, we studied the shape of Euphrosyne using hydrostatic equilibrium models. Our SPHERE observations show that Euphrosyne has a nearly spherical shape with the sphericity index of 0.9888 and its surface lacks large impact craters. Euphrosynes diameter is 268+/-6 km, making it one of the top 10 largest main belt asteroids. We detected a satellite of Euphrosyne -- S/2019 (31) 1-- that is about 4 km across, on an circular orbit. The mass determined from the orbit of the satellite together with the volume computed from the shape model imply a density of 1665+/-242 kg/m^3, suggesting that Euphrosyne probably contain a large fraction of water ice in its interior. We find that the spherical shape of Euphrosyne is a result of the reaccumulation process following the impact, as in the case of (10) Hygiea. However, our shape analysis reveals that, contrary to Hygiea, the axis ratios of Euphrosyne significantly differ from the ones suggested by fluid hydrostatic equilibrium following reaccumulation.
Small aperture telescopes provide the opportunity to conduct high frequency, targeted observations of near-Earth Asteroids that are not feasible with larger facilities due to highly competitive time allocation requirements. Observations of asteroids with these types of facilities often focus on rotational brightness variations rather than longer-term phase angle dependent variations (phase curves) due to the difficulty of achieving high precision photometric calibration. We have developed an automated asteroid light curve extraction and calibration pipeline for images of moving objects from the 0.43 m Physics Innovations Robotic Telescope Explorer (PIRATE). This allows for the frequency and quality of observations required to construct asteroid phase curves. Optimisations in standard data reduction procedures are identified that may allow for similar small aperture facilities, constructed from commercially available/off-the-shelf components, to improve image and subsequent data quality. A demonstration of the hardware and software capabilities is expressed through observation statistics from a 10 month observing campaign, and through the photometric characterisation of near-Earth Asteroids 8014 (1990 MF) and 19764 (2000 NF5).
In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6-meter BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 +- 6 km, eccentricity e = 0.016 +- 0.004, inclination i = 101{deg} +- 1{deg} to the ecliptic plane and others, are presented in this work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا