Do you want to publish a course? Click here

On Charons Far-Ultraviolet Surface Reflectance

226   0   0.0 ( 0 )
 Added by Brian Keeney
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first measurements of Charons far-ultraviolet surface reflectance, obtained by the Alice spectrograph on New Horizons. We find no measurable flux shortward of 1650 A, and Charons geometric albedo is $<0.019$ ($3sigma$) at 1600 A. From 1650--1725 A Charons geometric albedo increases to $0.166pm0.068$, and remains nearly constant until 1850 A. As this spectral shape is characteristic of H$_2$O ice absorption, Charon is the first Kuiper belt object with a H$_2$O ice surface to be detected in the far-ultraviolet. Charons geometric albedo is $sim3.7$ times lower than Enceladus at these wavelengths, but has a very similar spectral shape. We attribute this to similarities in their surface compositions, and the difference in absolute reflectivity to a high concentration or more-absorbing contaminants on Charons surface. Finally, we find that Charon has different solar phase behavior in the FUV than Enceladus, Mimas, Tethys, and Dione, with a stronger opposition surge than Enceladus and a shallower decline at intermediate solar phase angles than any of these Saturnian satellites.



rate research

Read More

During the New Horizons spacecrafts encounter with Pluto, the Alice ultraviolet spectrograph conducted a series of observations that detected emissions from both the interplanetary medium (IPM) and Pluto. In the direction of Pluto, the IPM was found to be 133.4$pm$0.6R at Lyman $alpha$, 0.24$pm$0.02R at Lyman $beta$, and <0.10R at He I 584{AA}. We analyzed 3,900s of data obtained shortly before closest approach to Pluto and detect airglow emissions from H I, N I, N II, N$_2$, and CO above the disk of Pluto. We find Plutos brightness at Lyman $alpha$ to be $29.3pm1.9$R, in good agreement with pre-encounter estimates. The detection of the N II multiplet at 1085{AA} marks the first direct detection of ions in Plutos atmosphere. We do not detect any emissions from noble gasses and place a 3$sigma$ upper limit of 0.14 R on the brightness of the Ar I 1048{AA} line. We compare pre-encounter model predictions and predictions from our own airglow model, based on atmospheric profiles derived from the solar occultation observed by New Horizons, to the observed brightness of Plutos airglow. Although completely opaque at Lyman $alpha$, Plutos atmosphere is optically thin at wavelengths longer than 1425{AA}. Consequently, a significant amount of solar FUV light reaches the surface, where it can participate in space weathering processes. From the brightness of sunlight reflected from Pluto, we find the surface has a reflectance factor (I/F) of 17% between 1400-1850{AA}. We also report the first detection of an C$_3$ hydrocarbon molecule, methylacetylene, in absorption, at a column density of ~5$times10^{15}$ cm$^{-2}$, corresponding to a column-integrated mixing ratio of $1.6times10^{-6}$.
72 - S. R. Kulkarni 2021
The diffuse far-ultraviolet (FUV) background has received considerable attention from astronomers since the seventies. The initial impetus came from the hope of detecting UV radiation from the hot intergalactic medium. The central importance of the FUV background to the physics (heating and ionization) of the diffuse atomic phases motivated the next generation of experiments. The consensus view is that the diffuse FUV emission at high latitudes has three components: stellar FUV reflected by dust grains (diffuse galactic light or DGL), FUV from other galaxies (extra-galactic background light, EBL) and a component of unknown origin. During the eighties, there was some discussion that decaying dark matter particles produced FUV radiation. In this paper I investigate production of FUV photons by conventional sources: the Galactic Hot Ionized Medium (line emission), two photon emission from the Galactic Warm Ionized Medium and low-velocity shocks, and Lyman-beta excitation of hydrogen at several locales in the Solar System (the interplanetary medium, the exosphere and thermosphere of Earth). I conclude that two thirds of the third component can be explained by the sum of the processes listed above.
117 - Paul D. Feldman 2018
Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.5 arcsec diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400 to 1700 A. In the two brightest comets, nineteen bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 A by the Space Telescope Imaging Spectrograph (STIS). The derived CO/H2O production rate ratio ranged from ~0.3% for Hartley 2 to ~22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 A and 1479 A, and of C I at 1561 A and 1657 A, were observed in all four comets. Weak emission from several lines of the H2 Lyman band system, excited by solar Lyman-alpha and Lyman-beta pumped fluorescence, were detected in comet Lovejoy.
We analyse MESSENGER reflectance measurements covering the northern polar region of Mercury, the least studied region of the northern mercurian hemisphere. We use observations from the Mercury Dual Imaging System Wide-Angle Camera (MDIS/WAC) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS/VIRS) to study the spectral dependence of the surface reflectance. The results obtained from the observations made by both instruments are remarkably consistent. We find that a second degree polynomial description of the measured reflectance spectra gives very good fits to the data and that the information that they carry can best be characterized by two parameters, the mean reflectance and the mean relative spectral slope, averaged over the explored range of wavelengths. The properties of the four main types of terrains known to form Mercurys regolith in the northern region, smooth plains (SP), heavily cratered terrain (HCT), fresh ejecta/materials and red pitted ground (RPG) are examined in terms of these two parameters. The results are compared, and found consistent with those obtained by earlier studies in spite of difficulties met in obtaining accurate reflectance measurements under the large incidence angle condition characteristic of polar regions. These results will help with the preparation of the BepiColombo mission and with supporting its observational strategy.
A unique feature of Plutos large satellite Charon is its dark red northern polar cap. Similar colours on Plutos surface have been attributed to organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location of this material on Charon implicates the temperature extremes that result from Charons high obliquity and long seasons. The escape of Plutos atmosphere provides a potential feed stock for production of complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charons winter pole was proposed as an explanation on the basis of an image of Charons northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase showing the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon, the supply and temporary cold-trapping of material escaping from Pluto, and, while cold-trapped, its photolytic processing into more complex and less volatile molecules. The model results are consistent with the proposed mechanism producing the observed colour pattern on Charon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا