No Arabic abstract
We analyse MESSENGER reflectance measurements covering the northern polar region of Mercury, the least studied region of the northern mercurian hemisphere. We use observations from the Mercury Dual Imaging System Wide-Angle Camera (MDIS/WAC) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS/VIRS) to study the spectral dependence of the surface reflectance. The results obtained from the observations made by both instruments are remarkably consistent. We find that a second degree polynomial description of the measured reflectance spectra gives very good fits to the data and that the information that they carry can best be characterized by two parameters, the mean reflectance and the mean relative spectral slope, averaged over the explored range of wavelengths. The properties of the four main types of terrains known to form Mercurys regolith in the northern region, smooth plains (SP), heavily cratered terrain (HCT), fresh ejecta/materials and red pitted ground (RPG) are examined in terms of these two parameters. The results are compared, and found consistent with those obtained by earlier studies in spite of difficulties met in obtaining accurate reflectance measurements under the large incidence angle condition characteristic of polar regions. These results will help with the preparation of the BepiColombo mission and with supporting its observational strategy.
We present the first ALMA observations of the closest known extrasolar debris disc. This disc orbits the star $epsilon$ Eridani, a K-type star just 3.2pc away. Due to the proximity of the star, the entire disc cannot fit within the ALMA field of view. Therefore, the observations have been centred 18 North of the star, providing us with a clear detection of the northern arc of the ring, at a wavelength of 1.3mm. The observed disc emission is found to be narrow with a width of just 11-13AU. The fractional disc width we find is comparable to that of the Solar Systems Kuiper Belt and makes this one of the narrowest debris discs known. If the inner and outer edges are due to resonances with a planet then this planet likely has a semi-major axis of 48AU. We find tentative evidence for clumps in the ring, although there is a strong chance that at least one is a background galaxy. We confirm, at much higher significance, the previous detection of an unresolved emission at the star that is above the level of the photosphere and attribute this excess to stellar chromospheric emission.
We investigate the formation mechanism for the observed nearly polar aligned (perpendicular to the binary orbital plane) debris ring around the eccentric orbit binary 99 Herculis. An initially inclined nonpolar debris ring or disc will not remain flat and will not evolve to a polar configuration, due to the effects of differential nodal precession that alter its flat structure. However, a gas disc with embedded well coupled solids around the eccentric binary may evolve to a polar configuration as a result of pressure forces that maintain the disc flatness and as a result of viscous dissipation that allows the disc to increase its tilt. Once the gas disc disperses, the debris disc is in a polar aligned state in which there is little precession. We use three-dimensional hydrodynamical simulations, linear theory, and particle dynamics to study the evolution of a misaligned circumbinary gas disc and explore the effects of the initial disc tilt, mass, and size. We find that for a wide range of parameter space, the polar alignment timescale is shorter than the lifetime of the gas disc. Using the observed level of alignment of 3 deg. from polar, we place an upper limit on the mass of the gas disc of about 0.014 M_sun at the time of gas dispersal. We conclude that the polar debris disc around 99 Her can be explained as the result of an initially moderately inclined gas disc with embedded solids. Such a disc may provide an environment for the formation of polar planets.
The winter polar vortices on Mars are annular in terms of their potential vorticity (PV) structure, a phenomenon identified in observations, reanalysis and some numerical simulations. Some recent modeling studies have proposed that condensation of atmospheric carbon dioxide at the winter pole is a contributing factor to maintaining the annulus through the release of latent heat. Dust and topographic forcing are also known to be causes of internal and interannual variability in the polar vortices. However, coupling between these factors remains uncertain, and previous studies of their impact on vortex structure and variability have been largely limited to a single Martian global climate model (MGCM). Here, by further developing a novel MGCM, we decompose the relative roles of latent heat and dust as drivers for the variability and structure of the northern Martian polar vortex. We also consider how Martian topography modifies the driving response. By also analyzing a reanalysis dataset we show that there is significant dependence in the polar vortex structure and variability on the observations assimilated. In both model and reanalysis, high atmospheric dust loading (such as that seen during a global dust storm) can disrupt the vortex, cause the destruction of PV in the low-mid altitudes (> 0.1 hPa), and significantly reduce spatial and temporal vortex variability. Through our simulations, we find that the combination of dust and topography primarily drives the eddy activity throughout the Martian year, and that although latent heat release can produce an annular vortex, it has a relatively minor effect on vortex variability.
We present the first measurements of Charons far-ultraviolet surface reflectance, obtained by the Alice spectrograph on New Horizons. We find no measurable flux shortward of 1650 A, and Charons geometric albedo is $<0.019$ ($3sigma$) at 1600 A. From 1650--1725 A Charons geometric albedo increases to $0.166pm0.068$, and remains nearly constant until 1850 A. As this spectral shape is characteristic of H$_2$O ice absorption, Charon is the first Kuiper belt object with a H$_2$O ice surface to be detected in the far-ultraviolet. Charons geometric albedo is $sim3.7$ times lower than Enceladus at these wavelengths, but has a very similar spectral shape. We attribute this to similarities in their surface compositions, and the difference in absolute reflectivity to a high concentration or more-absorbing contaminants on Charons surface. Finally, we find that Charon has different solar phase behavior in the FUV than Enceladus, Mimas, Tethys, and Dione, with a stronger opposition surge than Enceladus and a shallower decline at intermediate solar phase angles than any of these Saturnian satellites.
We perform a population synthesis of protoplanetary discs including infall with a total of $50,000$ simulations using a 1D vertically integrated viscous evolution code, studying a large parameter space in final stellar mass. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of $sim 0.3$ and $0.1,mathrm{M_odot}$ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems with final stellar mass $sim 1,mathrm{M_odot}$, we find disc masses of $sim 0.7,mathrm{M_odot}$ for the `hydro case and $sim 0.2,mathrm{M_odot}$ for the `MHD case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, $approx 5-7,mathrm{Myr}$ on average, despite our choice of a high value of $10^{-2}$ for the background viscosity $alpha$-parameter. In addition, fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation is suppressed entirely.