Do you want to publish a course? Click here

PPT Fusion: Pyramid Patch Transformerfor a Case Study in Image Fusion

168   0   0.0 ( 0 )
 Added by Yu Fu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Transformer architecture has achieved rapiddevelopment in recent years, outperforming the CNN archi-tectures in many computer vision tasks, such as the VisionTransformers (ViT) for image classification. However, existingvisual transformer models aim to extract semantic informationfor high-level tasks such as classification and detection, distortingthe spatial resolution of the input image, thus sacrificing thecapacity in reconstructing the input or generating high-resolutionimages. In this paper, therefore, we propose a Patch PyramidTransformer(PPT) to effectively address the above issues. Specif-ically, we first design a Patch Transformer to transform theimage into a sequence of patches, where transformer encodingis performed for each patch to extract local representations.In addition, we construct a Pyramid Transformer to effectivelyextract the non-local information from the entire image. Afterobtaining a set of multi-scale, multi-dimensional, and multi-anglefeatures of the original image, we design the image reconstructionnetwork to ensure that the features can be reconstructed intothe original input. To validate the effectiveness, we apply theproposed Patch Pyramid Transformer to the image fusion task.The experimental results demonstrate its superior performanceagainst the state-of-the-art fusion approaches, achieving the bestresults on several evaluation indicators. The underlying capacityof the PPT network is reflected by its universal power in featureextraction and image reconstruction, which can be directlyapplied to different image fusion tasks without redesigning orretraining the network.



rate research

Read More

Image decomposition is a crucial subject in the field of image processing. It can extract salient features from the source image. We propose a new image decomposition method based on convolutional neural network. This method can be applied to many image processing tasks. In this paper, we apply the image decomposition network to the image fusion task. We input infrared image and visible light image and decompose them into three high-frequency feature images and a low-frequency feature image respectively. The two sets of feature images are fused using a specific fusion strategy to obtain fusion feature images. Finally, the feature images are reconstructed to obtain the fused image. Compared with the state-of-the-art fusion methods, this method has achieved better performance in both subjective and objective evaluation.
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information. In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion. Specifically, CNN-based methods perform image fusion by fusing local features. However, they do not consider long-range dependencies that are present in the image. Transformer-based models are designed to overcome this by modeling the long-range dependencies with the help of self-attention mechanism. This motivates us to propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy that attends to both local and long-range information (or global context). The proposed method follows a two-stage training approach. In the first stage, we train an auto-encoder to extract deep features at multiple scales. In the second stage, multi-scale features are fused using a Spatio-Transformer (ST) fusion strategy. The ST fusion blocks are comprised of a CNN and a transformer branch which capture local and long-range features, respectively. Extensive experiments on multiple benchmark datasets show that the proposed method performs better than many competitive fusion algorithms. Furthermore, we show the effectiveness of the proposed ST fusion strategy with an ablation analysis. The source code is available at: https://github.com/Vibashan/Image-Fusion-Transformer.
84 - Xingchen Zhang 2020
Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and comprehensive performance comparison of MFIF methods, such as the lack of large-scale test set and the random choices of objective evaluation metrics in the literature. To solve these issues, this paper presents a multi-focus image fusion benchmark (MFIFB) which consists a test set of 105 image pairs, a code library of 30 MFIF algorithms, and 20 evaluation metrics. MFIFB is the first benchmark in the field of MFIF and provides the community a platform to compare MFIF algorithms fairly and comprehensively. Extensive experiments have been conducted using the proposed MFIFB to understand the performance of these algorithms. By analyzing the experimental results, effective MFIF algorithms are identified. More importantly, some observations on the status of the MFIF field are given, which can help to understand this field better.
This work addresses the problem of learning compact yet discriminative patch descriptors within a deep learning framework. We observe that features extracted by convolutional layers in the pixel domain are largely complementary to features extracted in a transformed domain. We propose a convolutional network framework for learning binary patch descriptors where pixel domain features are fused with features extracted from the transformed domain. In our framework, while convolutional and transformed features are distinctly extracted, they are fused and provided to a single classifier which thus jointly operates on convolutional and transformed features. We experiment at matching patches from three different datasets, showing that our feature fusion approach outperforms multiple state-of-the-art approaches in terms of accuracy, rate, and complexity.
133 - Arnaud Martin 2008
In image classification, merging the opinion of several human experts is very important for different tasks such as the evaluation or the training. Indeed, the ground truth is rarely known before the scene imaging. We propose here different models in order to fuse the informations given by two or more experts. The considered unit for the classification, a small tile of the image, can contain one or more kind of the considered classes given by the experts. A second problem that we have to take into account, is the amount of certainty of the expert has for each pixel of the tile. In order to solve these problems we define five models in the context of the Dempster-Shafer Theory and in the context of the Dezert-Smarandache Theory and we study the possible decisions with these models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا