Do you want to publish a course? Click here

A Deep Decomposition Network for Image Processing: A Case Study for Visible and Infrared Image Fusion

395   0   0.0 ( 0 )
 Added by Yu Fu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Image decomposition is a crucial subject in the field of image processing. It can extract salient features from the source image. We propose a new image decomposition method based on convolutional neural network. This method can be applied to many image processing tasks. In this paper, we apply the image decomposition network to the image fusion task. We input infrared image and visible light image and decompose them into three high-frequency feature images and a low-frequency feature image respectively. The two sets of feature images are fused using a specific fusion strategy to obtain fusion feature images. Finally, the feature images are reconstructed to obtain the fused image. Compared with the state-of-the-art fusion methods, this method has achieved better performance in both subjective and objective evaluation.



rate research

Read More

Recently, single-image super-resolution has made great progress owing to the development of deep convolutional neural networks (CNNs). The vast majority of CNN-based models use a pre-defined upsampling operator, such as bicubic interpolation, to upscale input low-resolution images to the desired size and learn non-linear mapping between the interpolated image and ground truth high-resolution (HR) image. However, interpolation processing can lead to visual artifacts as details are over-smoothed, particularly when the super-resolution factor is high. In this paper, we propose a Deep Recurrent Fusion Network (DRFN), which utilizes transposed convolution instead of bicubic interpolation for upsampling and integrates different-level features extracted from recurrent residual blocks to reconstruct the final HR images. We adopt a deep recurrence learning strategy and thus have a larger receptive field, which is conducive to reconstructing an image more accurately. Furthermore, we show that the multi-level fusion structure is suitable for dealing with image super-resolution problems. Extensive benchmark evaluations demonstrate that the proposed DRFN performs better than most current deep learning methods in terms of accuracy and visual effects, especially for large-scale images, while using fewer parameters.
We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets. The proposed architecture decomposes the input image spectra into multiple critically sampled subbands, extracts features using a single CNN per subband, and finally, performs classification by combining the extracted features using a fully connected layer. Processing each of the subbands by an individual CNN, thereby limiting the learning scope of each CNN to a single subband, imposes a form of structural regularization. This provides better generalization capability as seen by the presented results. The proposed architecture achieves best-in-class performance in terms of total multiply-add-accumulator operations and nearly best-in-class performance in terms of total parameters required, yet it maintains competitive classification performance. We also show the proposed architecture is more robust than the regular full-band CNN to noise caused by weight-and-bias quantization and input quantization.
167 - Yu Fu , TianYang Xu , XiaoJun Wu 2021
The Transformer architecture has achieved rapiddevelopment in recent years, outperforming the CNN archi-tectures in many computer vision tasks, such as the VisionTransformers (ViT) for image classification. However, existingvisual transformer models aim to extract semantic informationfor high-level tasks such as classification and detection, distortingthe spatial resolution of the input image, thus sacrificing thecapacity in reconstructing the input or generating high-resolutionimages. In this paper, therefore, we propose a Patch PyramidTransformer(PPT) to effectively address the above issues. Specif-ically, we first design a Patch Transformer to transform theimage into a sequence of patches, where transformer encodingis performed for each patch to extract local representations.In addition, we construct a Pyramid Transformer to effectivelyextract the non-local information from the entire image. Afterobtaining a set of multi-scale, multi-dimensional, and multi-anglefeatures of the original image, we design the image reconstructionnetwork to ensure that the features can be reconstructed intothe original input. To validate the effectiveness, we apply theproposed Patch Pyramid Transformer to the image fusion task.The experimental results demonstrate its superior performanceagainst the state-of-the-art fusion approaches, achieving the bestresults on several evaluation indicators. The underlying capacityof the PPT network is reflected by its universal power in featureextraction and image reconstruction, which can be directlyapplied to different image fusion tasks without redesigning orretraining the network.
84 - Xingchen Zhang 2020
Multi-focus image fusion (MFIF) has attracted considerable interests due to its numerous applications. While much progress has been made in recent years with efforts on developing various MFIF algorithms, some issues significantly hinder the fair and comprehensive performance comparison of MFIF methods, such as the lack of large-scale test set and the random choices of objective evaluation metrics in the literature. To solve these issues, this paper presents a multi-focus image fusion benchmark (MFIFB) which consists a test set of 105 image pairs, a code library of 30 MFIF algorithms, and 20 evaluation metrics. MFIFB is the first benchmark in the field of MFIF and provides the community a platform to compare MFIF algorithms fairly and comprehensively. Extensive experiments have been conducted using the proposed MFIFB to understand the performance of these algorithms. By analyzing the experimental results, effective MFIF algorithms are identified. More importantly, some observations on the status of the MFIF field are given, which can help to understand this field better.
163 - Weiya Fan 2020
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to learn the fingerprint features of noisy images.the decoder subnet reconstructs the original fingerprint image based on the features to achieve denoising, while using the dilated convolution in the network to increase the receptor field without increasing the complexity and improve the network inference speed. In addition, feature fusion at different levels of the network is achieved through the introduction of residual learning, which further restores the detailed features of the fingerprint and improves the denoising effect. Finally, the experimental results show that the algorithm enables better recovery of edge, line and curve features in fingerprint images, with better visual effects and higher peak signal-to-noise ratio (PSNR) compared to other methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا