Do you want to publish a course? Click here

Superconducting triplet pairings and anisotropic tunneling-magnetoresistance effects in ferromagnet/superconductor/ferromagnet double-barrier junctions

100   0   0.0 ( 0 )
 Added by Andreas Costa Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferromagnetic spin valves offer the key building blocks to integrate giant- and tunneling-magnetoresistance effects into spintronics devices. Starting from a generalized Blonder--Tinkham--Klapwijk approach, we theoretically investigate the impact of interfacial Rashba and Dresselhaus spin-orbit couplings on the tunneling conductance, and thereby the tunneling-magnetoresistance characteristics, of ferromagnet/superconductor/ferromagnet spin-valve junctions embedding thin superconducting spacers between the either parallel or antiparallel magnetized ferromagnets. We focus on the unique interplay between usual electron tunnelings -- that fully determine the tunneling magnetoresistance in the normal-conducting state -- and the peculiar Andreev reflections in the superconducting state. In the presence of interfacial spin-orbit couplings, special attention needs to be paid to the spin-flip (unconventional) Andreev-reflection process that is expected to induce superconducting triplet correlations in proximitized regions. As a transport signature of these triplet pairings, we detect conductance double-peaks around the singlet-gap energy, reflecting the competition between the singlet and the newly emerging triplet gap. We thoroughly analyze the Andreev reflections role in connection with superconducting tunneling-magnetoresistance phenomena, and eventually unravel huge conductance and tunneling-magnetoresistance magnetoanisotropies -- easily exceeding their normal-state counterparts by several orders of magnitude -- as another experimentally accessible fingerprint of unconventional Andreev reflections. Our results provide an important contribution to establish superconducting magnetic spin valves as an essential ingredient for future superconducting-spintronics concepts.



rate research

Read More

We study the tunneling conductance of a ballistic normal metal / ferromagnet / spin-triplet superconductor junction using the extended Blonder-Tinkham-Klapwijk formalism as a model for a $c$-axis oriented Au / SrRuO$_{3}$ / Sr$_{2}$RuO$_{4}$ junction. We compare chiral $p$-wave (CPW) and helical $p$-wave (HPW) pair potentials, combined with ferromagnet magnetization directions parallel and perpendicular to the interface. For fixed $theta_{M}$, where $theta_{M}$ is a direction of magnetization in the ferromagnet measured from the $c$-axis, the tunneling conductance of CPW and HPW clearly show different voltage dependencies. It is found that the cases where the $d$-vector is perpendicular to the magnetization direction (CPW with $theta_{M} = pi/2$ and HPW with $theta_{M} = 0$) are identical. The obtained results serve as a guide to determine the pairing symmetry of the spin-triplet superconductor Sr$_{2}$RuO$_{4}$.
266 - T. Kirzhner , G. Koren 2010
Measurements of the differential conductance spectra of YBa2Cu3O7-SrRuO3 and YBa2Cu3O7-La0.67Ca_0.33MnO3 ramp-type junctions along the node and anti-node directions are reported. The results are consistent with a crossed Andreev reflection effect only in YBa2Cu3O7-SrRuO3 junctions where the domain wall width of SrRuO3 is comparable with the coherence length of YBa2Cu3O7. No such effect was observed in the YBa2Cu3O7-La0.67Ca0.33MnO3 junctions, which is in line with the much larger (x10) domain wall width of La0.67Ca0.33MnO3. We also show that crossed Andreev exists only in the anti-node direction. Furthermore, we find evidence that crossed Andreev in YBa2Cu3O7 junctions is not sensitive to nm-scale interface defects, suggesting that the length scale of the crossed Andreev effect is larger than the coherence length, but still smaller than the La0.67Ca0.33MnO3s domain wall width.
We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combing the non-equilibrium Greens function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is $pi$ instead of $2pi$ as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconductor gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance reveals a strong magnetoanisotropy with period $pi$ as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconductor gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection, and has underlying application of $pi$-periodic spin valve in spintronics.
We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.
Thermoelectric effects result from the coupling of charge and heat transport, and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures, and vanishes at low temperatures. We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the depencence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا