Do you want to publish a course? Click here

Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

144   0   0.0 ( 0 )
 Added by Wolfgang Belzig
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermoelectric effects result from the coupling of charge and heat transport, and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures, and vanishes at low temperatures. We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the depencence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators



rate research

Read More

65 - S. Kolenda , M. J. Wolf , 2015
We report on the experimental observation of thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about $-100~mathrm{mu V/K}$, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.
We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin-split by a Zeeman field with a ferromagnet with a non-zero polarization. The resulting thermopower exceeds $k_B/e$ by a large factor, and the thermoelectric figure of merit $ZT$ can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.
255 - T. Kirzhner , G. Koren 2010
Measurements of the differential conductance spectra of YBa2Cu3O7-SrRuO3 and YBa2Cu3O7-La0.67Ca_0.33MnO3 ramp-type junctions along the node and anti-node directions are reported. The results are consistent with a crossed Andreev reflection effect only in YBa2Cu3O7-SrRuO3 junctions where the domain wall width of SrRuO3 is comparable with the coherence length of YBa2Cu3O7. No such effect was observed in the YBa2Cu3O7-La0.67Ca0.33MnO3 junctions, which is in line with the much larger (x10) domain wall width of La0.67Ca0.33MnO3. We also show that crossed Andreev exists only in the anti-node direction. Furthermore, we find evidence that crossed Andreev in YBa2Cu3O7 junctions is not sensitive to nm-scale interface defects, suggesting that the length scale of the crossed Andreev effect is larger than the coherence length, but still smaller than the La0.67Ca0.33MnO3s domain wall width.
Superconductivity and magnetism are generally incompatible because of the opposing requirement on electron spin alignment. When combined, they produce a multitude of fascinating phenomena, including unconventional superconductivity and topological superconductivity. The emergence of two-dimensional (2D)layered superconducting and magnetic materials that can form nanoscale junctions with atomically sharp interfaces presents an ideal laboratory to explore new phenomena from coexisting superconductivity and magnetic ordering. Here we report tunneling spectroscopy under an in-plane magnetic field of superconductor-ferromagnet-superconductor (S/F/S) tunnel junctions that are made of 2D Ising superconductor NbSe2 and ferromagnetic insulator CrBr3. We observe nearly 100% tunneling anisotropic magnetoresistance (AMR), that is, difference in tunnel resistance upon changing magnetization direction from out-of-plane to inplane. The giant tunneling AMR is induced by superconductivity, particularly, a result of interfacial magnetic exchange coupling and spin-dependent quasiparticle scattering. We also observe an intriguing magnetic hysteresis effect in superconducting gap energy and quasiparticle scattering rate with a critical temperature that is 2 K below the superconducting transition temperature. Our study paves the path for exploring superconducting spintronic and unconventional superconductivity in van der Waals heterostructures.
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do no more obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Secondly, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا