Do you want to publish a course? Click here

Inverse Proximity Effects at Spin-Triplet Superconductor-Ferromagnet Interface

258   0   0.0 ( 0 )
 Added by Mario Cuoco
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.



rate research

Read More

We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs and assuming spin dependent processes at the interface. We use a self-consistent Bogoliubov-de Gennes approach on a three-dimensional lattice to obtain the spatial profiles of the pairing amplitude and the magnetization. We find that, depending on the strength of the ferromagnetic exchange field, the ground state of the system can have two distinct configurations with a parallel or anti-parallel collinearity between the magnetic moments in the bulk and at the interface. We demonstrate that a magnetic state having non coplanar interface, bulk and Cooper pairs spins may be stabilized if the bulk magnetization is assumed to be fixed along a given direction. The study of the density of states reveals that the modification of the electronic spectrum in the FM plays an important role in the setting of the optimal magnetic configuration. Finally, we find the existence of induced spin-polarized pair correlations in the FM-TSC system.
Considerable evidence for proximity-induced triplet superconductivity on the ferromagnetic side of a superconductor-ferromagnet (S-F) interface now exists; however, the corresponding effect on the superconductor side has hardly been addressed. We have performed scanning tunneling spectroscopy measurements on NbN superconducting thin films proximity coupled to the half-metallic ferromagnet La2/3Ca1/3MnO3 (LCMO) as a function of magnetic field. We have found that at zero and low applied magnetic fields the tunneling spectra on NbN typically show an anomalous gap structure with suppressed coherence peaks and, in some cases, a zero-bias conductance peak. As the field increases to the magnetic saturation of LCMO where the magnetization is homogeneous, the spectra become more BCS-like and the critical temperature of the NbN increases, implying a reduced proximity effect. Our results therefore suggest that triplet-pairing correlations are also induced in the S side of an S-F bilayer.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscillatory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the inverse proximity effect, in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the lights optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al..
The superconducting critical temperature $T_C$ of a superconductor/ferromagnet (S/F) bilayer with spin-flip scatterings at the interface is calculated as a function of the ferromagnet thickness $d_F$ in the dirty limit employing the Usadel equation. The appropriate boundary conditions from the spin-flip scatterings at the S/F interface are derived for the Usadel equation which includes the spin triplet pairing components as well as the spin singlet one. The spin-flip processes induce the spin triplet pairing components with s-wave in momentum and odd symmetry in frequency from the s-wave singlet order parameter $Delta$ of the superconductor region. The induced triplet components alter the singlet order parameter in the superconductor through boundary conditions at the interface and, consequently, change the $T_C$ of an S/F bilayer system. The calculated $T_C(d_F)$, like the case of no spin-flips, shows non-monotonic behavior which typically decreases as $d_F$ is increased from 0 and shows a shallow minimum and then saturates slowly as $d_F$ is further increased. It is well established that as the interface resistance (parameterized in terms of $gamma_b$) is increased, the $T_C$ is increased for a given $d_F$ and the non-monotonic feature in $T_C(d_F)$ is strongly suppressed. As the spin flip scattering (parameterized in terms of $gamma_m$) is increased, on the other hand, the $T_C$ is also increased for a given $d_F$, but the non-monotonic feature in $T_C(d_F)$ is less suppressed or even enhanced, through the formation of the spin triplet components.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا