No Arabic abstract
Quantum computers have the potential to efficiently solve problems in logistics, drug and material design, finance, and cybersecurity. However, millions of qubits will be necessary for correcting inevitable errors in quantum operations. In this scenario, electron spins in gate-defined silicon quantum dots are strong contenders for encoding qubits, leveraging the microelectronics industry know-how for fabricating densely populated chips with nanoscale electrodes. The sophisticated material combinations used in commercially manufactured transistors, however, will have a very different impact on the fragile qubits. We review here some key properties of the materials that have a direct impact on qubit performance and variability.
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual DC, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long spin coherence times, and the rich options for integration with classical electronics based on the same technology.
Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99:9%. However, these micromagnets also apply stray magnetic field gradients onto the qubits, making the spin states susceptible to electric field noise and limiting their coherence times. We describe here a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability. Specifically, we design and optimize magnet dimensions and position relative to the quantum dots, minimizing dephasing from magnetic field gradients. The micromagnet-induced dephasing rates with this design are up to 3-orders of magnitude lower than state-of-the-art implementations, allowing for long coherence times. This design is robust against fabrication errors, and can be combined with a wide variety of silicon qubit device geometries, thereby allowing exploration of coherence limiting factors and novel upscaling approaches.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approach to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. In order to increase the number of qubits to the thousands or millions of qubits needed for practical quantum information we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for non-planar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Qubit addressability and readout are enabled by self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron triplet states relax non-radiatively to their singlet ground state via a spin non conserving flip-flop with the ground state heavy hole. We explain this mechanism in terms of resonant coupling between the confined electron states and an LO phonon. This resonant interaction together with the electron-hole exchange interaction provides an efficient mechanism for this, otherwise spin-blockaded, electronic relaxation.