Do you want to publish a course? Click here

A new type of non-Hermitian phase transition in open systems far from thermal equilibrium

81   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a new type of non-Hermitian phase transition in open systems far from thermal equilibrium, which takes place in coupled systems interacting with reservoirs at different temperatures. The frequency of the maximum in the spectrum of energy flow through the system plays the role of the order parameter, and is determined by an analog of the -potential. The phase transition is exhibited in the frequency splitting of the spectrum at a critical point, the value of which is determined by the relaxation rates and the coupling strengths. Near the critical point, fluctuations of the order parameter diverge according to a power law. We show that the critical exponent depends only on the ratio of reservoir temperatures. This dependence indicates the non-equilibrium nature of the phase transition at the critical point. This new non-Hermitian phase transition can take place in systems without exceptional points.



rate research

Read More

154 - Ingrid Rotter 2017
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open quantum systems by means of a projection operator formalism elaborated many years ago, and applied by now to the description of different open quantum systems. The Hamiltonian describing the open quantum system is non-Hermitian. Most studied are the eigenvalues of the non-Hermitian Hamiltonian of many-particle systems embedded in one environment. We point to the unsolved problems of this method when applied to the description of realistic many-body systems. We then underline the role played by the eigenfunctions of the non-Hermitian Hamiltonian. Very interesting results originate from the fluctuations of the eigenfunctions in systems with gain and loss of excitons. They occur with an efficiency of nearly 100%. An example is the photosynthesis.
We demonstrate a non-equilibrium phase transition in a dilute thermal atomic gas. The phase transition, between states of low and high Rydberg occupancy, is induced by resonant dipole-dipole interactions between Rydberg atoms. The gas can be considered as dilute as the atoms are separated by distances much greater than the wavelength of the optical transitions used to excite them. In the frequency domain we observe a mean-field shift of the Rydberg state which results in intrinsic optical bistability above a critical Rydberg number density. In the time domain we observe critical slowing down where the recovery time to system perturbations diverges with critical exponent $tau=0.53 pm 0.10$. The atomic emission spectrum of the phase with high Rydberg occupancy provides evidence for a superradiant cascade.
212 - Ingrid Rotter 2007
In the Feshbach projection operator (FPO) formalism the whole function space is divided into two subspaces. One of them contains the wave functions localized in a certain finite region while the continuum of extended scattering wave functions is involved in the other subspace. The Hamilton operator of the whole system is Hermitian, that of the localized part is, however, non-Hermitian. This non-Hermitian Hamilton operator $H_{rm eff}$ represents the core of the FPO method in present-day studies. It gives a unified description of discrete and resonance states. Furthermore, it contains the time operator. The eigenvalues $z_lambda$ and eigenfunctions $phi_lambda$ of $H_{rm eff}$ are an important ingredient of the $S$ matrix. They are energy dependent. The phases of the $phi_lambda$ are, generally, nonrigid. Most interesting physical effects are caused by the branch points in the complex plane. On the one hand, they cause the avoided level crossings that appear as level repulsion or widths bifurcation in approaching the branch points under different conditions. On the other hand, observable values are usually enhanced and accelerated in the vicinity of the branch points. In most cases, the theory is time asymmetric. An exception are the ${cal PT}$ symmetric bound states in the continuum appearing in space symmetric systems due to the avoided level crossing phenomenon in the complex plane. In the paper, the peculiarities of the FPO method are considered and three typical phenomena are sketched: (i) the unified description of decay and scattering processes, (ii) the appearance of bound states in the continuum and (iii) the spectroscopic reordering processes characteristic of the regime with overlapping resonances.
59 - Jose D. H. Rivero , Li Ge 2021
Noethers theorem relates constants of motion to the symmetries of the system. Here we investigate a manifestation of Noethers theorem in non-Hermitian systems, where the inner product is defined differently from quantum mechanics. In this framework, a generalized symmetry which we term pseudo-chirality emerges naturally as the counterpart of symmetries defined by a commutation relation in quantum mechanics. Using this observation, we reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries. We further elaborate the disparate implications of pseudo-chirality induced constant of motion: It signals the pair excitation of a generalized particle and the corresponding hole but vanishes universally when the pseudo-chiral operator is anti-symmetric. This disparity, when manifested in a non-Hermitian topological lattice with the Landau gauge, depends on whether the lattice size is even or odd. We further discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا