Do you want to publish a course? Click here

Pseudo-chirality: a manifestation of Noethers theorem in non-Hermitian systems

60   0   0.0 ( 0 )
 Added by Li Ge
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Noethers theorem relates constants of motion to the symmetries of the system. Here we investigate a manifestation of Noethers theorem in non-Hermitian systems, where the inner product is defined differently from quantum mechanics. In this framework, a generalized symmetry which we term pseudo-chirality emerges naturally as the counterpart of symmetries defined by a commutation relation in quantum mechanics. Using this observation, we reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries. We further elaborate the disparate implications of pseudo-chirality induced constant of motion: It signals the pair excitation of a generalized particle and the corresponding hole but vanishes universally when the pseudo-chiral operator is anti-symmetric. This disparity, when manifested in a non-Hermitian topological lattice with the Landau gauge, depends on whether the lattice size is even or odd. We further discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.



rate research

Read More

We demonstrate a new type of non-Hermitian phase transition in open systems far from thermal equilibrium, which takes place in coupled systems interacting with reservoirs at different temperatures. The frequency of the maximum in the spectrum of energy flow through the system plays the role of the order parameter, and is determined by an analog of the -potential. The phase transition is exhibited in the frequency splitting of the spectrum at a critical point, the value of which is determined by the relaxation rates and the coupling strengths. Near the critical point, fluctuations of the order parameter diverge according to a power law. We show that the critical exponent depends only on the ratio of reservoir temperatures. This dependence indicates the non-equilibrium nature of the phase transition at the critical point. This new non-Hermitian phase transition can take place in systems without exceptional points.
We have briefly analyzed the existence of the pseudofermionic structure of multilevel pseudo-Hermitian systems with odd time-reversal and higher order involutive symmetries. We have shown that 2N-level Hamiltonians with N-order eigenvalue degeneracy can be represented in the oscillator-like form in terms of pseudofermionic creation and annihilation operators for both real and complex eigenvalues. The example of most general four-level traceless Hamiltonian with odd time-reversal symmetry, which is an extension of the SO(5) Hermitian Hamiltonian, is considered in greater and explicit detail.
83 - Qi Zhang , Biao Wu 2019
The monopole for the geometric curvature is studied for non-Hermitian systems. We find that the monopole contains not only the exceptional points but also branch cuts. As the mathematical choice of branch cut in the complex plane is rather arbitrary, the monopole changes with the branch-cut choice. Despite this branch-cut dependence, our monopole is invariant under the $GL(l,mathbb{C})$ gauge transformation that is inherent in non-Hermitian systems. Although our results are generic, they are presented in the context of a two-mode non-Hermitian Dirac model. A corresponding two-mode Hermitian system is also discussed to illustrate the essential difference between monopoles in Hermitian systems and non-Hermitian systems.
168 - Boris F. Samsonov 2012
One of the simplest non-Hermitian Hamiltonians first proposed by Schwartz (1960 {it Commun. Pure Appl. Math.} tb{13} 609) which may possess a spectral singularity is analyzed from the point of view of non-Hermitian generalization of quantum mechanics. It is shown that $eta$ operator, being a second order differential operator, has supersymmetric structure. Asymptotic behavior of eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of the spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point the equivalent Hermitian Hamiltonian becomes undetermined.
178 - Klaus Bering 2009
We give an elementary proof of Noethers first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا