Do you want to publish a course? Click here

Reweighting the quark Sivers function with STAR jet data

84   0   0.0 ( 0 )
 Added by Carlo Flore
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The Bayesian reweighting procedure is applied for the first time to a TMD distribution, the quark Sivers function extracted from SIDIS data. By exploiting the recent published single spin asymmetry data for the inclusive jet production in $p^uparrow p$ collisions from the STAR collaboration at RHIC, we show how such a procedure allows to incorporate the information contained in the new data set, without the need of re-fitting, and to explore a much wider $x$ region compared to SIDIS measurements. The reweighting method is also extended to the case of asymmetric errors, and the results show a significant improvement on the knowledge of the quark Sivers function.



rate research

Read More

The reweighting procedure that using Bayesian statistics incorporates the information contained in a new data set, without the need of re-fitting, is applied to the quark Sivers function extracted from Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. We exploit the recently published single spin asymmetry data for the inclusive jet production in polarized $pp$ collisions from the STAR Collaboration at RHIC, which cover a much wider $x$ region compared to SIDIS measurements. The reweighting method is extended to the case of asymmetric errors and the results show a remarkable improvement of the knowledge of the quark Sivers function.
We perform a global fit of the available polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), polarized pion-induced Drell-Yan (DY) and $W^pm/Z$ boson production data at N$^3$LO and NNLO accuracy of the Transverse Momentum Dependent (TMD) evolution, and extract the Sivers function for $u$, $d$, $s$ and for sea quarks. The Qiu-Sterman function is determined in a model independent way via the operator product expansion from the extracted Sivers function. The analysis is supplemented by additional studies, such as the estimation of applicability region, the impact of the unpolarized distributions uncertainties, the universality of the Sivers functions, positivity constraints, the significance of the sign-change relation, and the comparison with the existing extractions
We perform the global analysis of polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), pion-induced polarized Drell-Yan (DY), and $W^pm/Z$ boson production data and extract the Sivers function for $u$, $d$, $s$ and for sea-quarks. We use the framework of transverse momentum dependent factorization at N$^3$LO accuracy. The Qiu-Sterman function is determined in a model-independent way from the extracted Sivers function. We also evaluate the significance of the predicted sign change of Sivers function in DY with respect to SIDIS.
It is commonly believed that the Sivers function has uniquely to do with processes involving a transversely polarized nucleon. In this paper we show that it is not necessarily the case. We demonstrate that exclusive pion production in $un$polarized electron-proton scattering in the forward region is a direct probe of the gluon Sivers function due to its connection to the QCD Odderon.
Using Soft-Collinear Effective Theory, we develop the transverse-momentum-dependent factorization formalism for heavy flavor dijet production in polarized-proton-electron collisions. We consider heavy flavor mass corrections in the collinear-soft and jet functions, as well as the associated evolution equations. Using this formalism, we generate a prediction for the gluon Sivers asymmetry for charm and bottom dijet production at the future Electron-Ion Collider. Furthermore, we compare theoretical predictions with and without the inclusion of finite quark masses. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا