Do you want to publish a course? Click here

Probing the Sivers function with an unpolarized target: GTMD distributions and the Odderons

103   0   0.0 ( 0 )
 Added by Renaud Boussarie
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

It is commonly believed that the Sivers function has uniquely to do with processes involving a transversely polarized nucleon. In this paper we show that it is not necessarily the case. We demonstrate that exclusive pion production in $un$polarized electron-proton scattering in the forward region is a direct probe of the gluon Sivers function due to its connection to the QCD Odderon.

rate research

Read More

We propose a unified new approach to describe polarized and unpolarized quark distributions in the proton based on the gauge-gravity correspondence, light-front holography, and the generalized Veneziano model. We find that the spin-dependent quark distributions are uniquely determined in terms of the unpolarized distributions by chirality separation without the introduction of additional free parameters. The predictions are consistent with existing experimental data and agree with perturbative QCD constraints at large longitudinal momentum $x$. In particular, we predict the sign reversal of the polarized down-quark distribution in the proton at $x=0.8pm0.03$, a key property of nucleon substructure which will be tested very soon in upcoming experiments.
The Bayesian reweighting procedure is applied for the first time to a TMD distribution, the quark Sivers function extracted from SIDIS data. By exploiting the recent published single spin asymmetry data for the inclusive jet production in $p^uparrow p$ collisions from the STAR collaboration at RHIC, we show how such a procedure allows to incorporate the information contained in the new data set, without the need of re-fitting, and to explore a much wider $x$ region compared to SIDIS measurements. The reweighting method is also extended to the case of asymmetric errors, and the results show a significant improvement on the knowledge of the quark Sivers function.
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of non-global logarithms and underlying event. At the same time, by reducing the final state hadronization effects, it provides a clean access to the non-perturbative part of the evolution of transverse momentum dependent (TMD) distributions. In SIDIS experiments we look at the transverse momentum of the groomed jet measured w.r.t. the incoming hadron in the Breit frame. Because the final state hadronization effects are significantly reduced, the SIDIS case allows to probe the TMD parton distribution functions. We discuss the sources of non-perturbative effects in the low transverse momentum region including novel (but small) effects that arise due to grooming. We derive a factorization theorem within SCET and resum any large logarithm in the measured transverse momentum up to NNLL accuracy using the $zeta$-prescription as implemented in the artemide package and provide a comparison with simulations.
The reweighting procedure that using Bayesian statistics incorporates the information contained in a new data set, without the need of re-fitting, is applied to the quark Sivers function extracted from Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. We exploit the recently published single spin asymmetry data for the inclusive jet production in polarized $pp$ collisions from the STAR Collaboration at RHIC, which cover a much wider $x$ region compared to SIDIS measurements. The reweighting method is extended to the case of asymmetric errors and the results show a remarkable improvement of the knowledge of the quark Sivers function.
239 - Masashi Wakamatsu 2014
It is now widely recognized that a key to unravel the nonperturbative chiral-dynamics of QCD hidden in the deep-inelastic-scattering observables is the flavor structure of sea-quark distributions in the nucleon. We analyze the flavor structure of the nucleon sea in both of the unpolarized and longitudinally polarized parton distribution functions (PDFs) within a single theoretical framework of the flavor SU(3) chiral quark soliton model (CQSM), which contains only one adjustable parameter $Delta m_s$, the effective mass difference between the strange and nonstrange quarks. A particular attention is paid to a nontrivial correlation between the flavor asymmetry of the unpolarized and longitudinally polarized sea-quark distributions and also to a possible particle-antiparticle asymmetry of the strange quark distributions in the nucleon. We also investigate the charge-symmetry-violation (CSV) effects in the parton distribution functions exactly within the same theretical framework, which is expected to provide us with valuable information on the relative importance of the asymmetry of the strange and antistrange distributions and the CSV effects in the valence-quark distributions inside the nucleon in the resolution scenario of the so-called NuTeV anomaly in the extraction of the Weinberg angle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا