Do you want to publish a course? Click here

TransAction: ICL-SJTU Submission to EPIC-Kitchens Action Anticipation Challenge 2021

295   0   0.0 ( 0 )
 Added by Xiao Gu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this report, the technical details of our submission to the EPIC-Kitchens Action Anticipation Challenge 2021 are given. We developed a hierarchical attention model for action anticipation, which leverages Transformer-based attention mechanism to aggregate features across temporal dimension, modalities, symbiotic branches respectively. In terms of Mean Top-5 Recall of action, our submission with team name ICL-SJTU achieved 13.39% for overall testing set, 10.05% for unseen subsets and 11.88% for tailed subsets. Additionally, it is noteworthy that our submission ranked 1st in terms of verb class in all three (sub)sets.



rate research

Read More

This report describes the technical details of our submission to the EPIC-Kitchens 2021 Unsupervised Domain Adaptation Challenge for Action Recognition. The EPIC-Kitchens dataset is more difficult than other video domain adaptation datasets due to multi-tasks with more modalities. Firstly, to participate in the challenge, we employ a transformer to capture the spatial information from each modality. Secondly, we employ a temporal attention module to model temporal-wise inter-dependency. Thirdly, we employ the adversarial domain adaptation network to learn the general features between labeled source and unlabeled target domain. Finally, we incorporate multiple modalities to improve the performance by a three-stream network with late fusion. Our network achieves the comparable performance with the state-of-the-art baseline T$A^3$N and outperforms the baseline on top-1 accuracy for verb class and top-5 accuracies for all three tasks which are verb, noun and action. Under the team name xy9, our submission achieved 5th place in terms of top-1 accuracy for verb class and all top-5 accuracies.
In this report, we describe the technical details of our submission to the 2021 EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action Recognition. Leveraging multiple modalities has been proved to benefit the Unsupervised Domain Adaptation (UDA) task. In this work, we present Multi-Modal Mutual Enhancement Module (M3EM), a deep module for jointly considering information from multiple modalities to find the most transferable representations across domains. We achieve this by implementing two sub-modules for enhancing each modality using the context of other modalities. The first sub-module exchanges information across modalities through the semantic space, while the second sub-module finds the most transferable spatial region based on the consensus of all modalities.
This technical report presents an overview of our solution used in the submission to 2021 HACS Temporal Action Localization Challenge on both Supervised Learning Track and Weakly-Supervised Learning Track. Temporal Action Localization (TAL) requires to not only precisely locate the temporal boundaries of action instances, but also accurately classify the untrimmed videos into specific categories. However, Weakly-Supervised TAL indicates locating the action instances using only video-level class labels. In this paper, to train a supervised temporal action localizer, we adopt Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through ``local and global temporal context aggregation and complementary as well as progressive boundary refinement. As for the WSTAL, a novel framework is proposed to handle the poor quality of CAS generated by simple classification network, which can only focus on local discriminative parts, rather than locate the entire interval of target actions. Further inspired by the transfer learning method, we also adopt an additional module to transfer the knowledge from trimmed videos (HACS Clips dataset) to untrimmed videos (HACS Segments dataset), aiming at promoting the classification performance on untrimmed videos. Finally, we employ a boundary regression module embedded with Outer-Inner-Contrastive (OIC) loss to automatically predict the boundaries based on the enhanced CAS. Our proposed scheme achieves 39.91 and 29.78 average mAP on the challenge testing set of supervised and weakly-supervised temporal action localization track respectively.
With the recent surge in the research of vision transformers, they have demonstrated remarkable potential for various challenging computer vision applications, such as image recognition, point cloud classification as well as video understanding. In this paper, we present empirical results for training a stronger video vision transformer on the EPIC-KITCHENS-100 Action Recognition dataset. Specifically, we explore training techniques for video vision transformers, such as augmentations, resolutions as well as initialization, etc. With our training recipe, a single ViViT model achieves the performance of 47.4% on the validation set of EPIC-KITCHENS-100 dataset, outperforming what is reported in the original paper by 3.4%. We found that video transformers are especially good at predicting the noun in the verb-noun action prediction task. This makes the overall action prediction accuracy of video transformers notably higher than convolutional ones. Surprisingly, even the best video transformers underperform the convolutional networks on the verb prediction. Therefore, we combine the video vision transformers and some of the convolutional video networks and present our solution to the EPIC-KITCHENS-100 Action Recognition competition.
In this report, we present our solution for the task of temporal action localization (detection) (task 1) in ActivityNet Challenge 2020. The purpose of this task is to temporally localize intervals where actions of interest occur and predict the action categories in a long untrimmed video. Our solution mainly includes three components: 1) feature encoding: we apply three kinds of backbones, including TSN [7], Slowfast[3] and I3d[1], which are both pretrained on Kinetics dataset[2]. Applying these models, we can extract snippet-level video representations; 2) proposal generation: we choose BMN [5] as our baseline, base on which we design a Cascade Boundary Refinement Network (CBR-Net) to conduct proposal detection. The CBR-Net mainly contains two modules: temporal feature encoding, which applies BiLSTM to encode long-term temporal information; CBR module, which targets to refine the proposal precision under different parameter settings; 3) action localization: In this stage, we combine the video-level classification results obtained by the fine tuning networks to predict the category of each proposal. Moreover, we also apply to different ensemble strategies to improve the performance of the designed solution, by which we achieve 42.788% on the testing set of ActivityNet v1.3 dataset in terms of mean Average Precision metrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا