No Arabic abstract
In this report, we present our solution for the task of temporal action localization (detection) (task 1) in ActivityNet Challenge 2020. The purpose of this task is to temporally localize intervals where actions of interest occur and predict the action categories in a long untrimmed video. Our solution mainly includes three components: 1) feature encoding: we apply three kinds of backbones, including TSN [7], Slowfast[3] and I3d[1], which are both pretrained on Kinetics dataset[2]. Applying these models, we can extract snippet-level video representations; 2) proposal generation: we choose BMN [5] as our baseline, base on which we design a Cascade Boundary Refinement Network (CBR-Net) to conduct proposal detection. The CBR-Net mainly contains two modules: temporal feature encoding, which applies BiLSTM to encode long-term temporal information; CBR module, which targets to refine the proposal precision under different parameter settings; 3) action localization: In this stage, we combine the video-level classification results obtained by the fine tuning networks to predict the category of each proposal. Moreover, we also apply to different ensemble strategies to improve the performance of the designed solution, by which we achieve 42.788% on the testing set of ActivityNet v1.3 dataset in terms of mean Average Precision metrics.
This technical report presents an overview of our solution used in the submission to ActivityNet Challenge 2019 Task 1 (textbf{temporal action proposal generation}) and Task 2 (textbf{temporal action localization/detection}). Temporal action proposal indicates the temporal intervals containing the actions and plays an important role in temporal action localization. Top-down and bottom-up methods are the two main categories used for proposal generation in the existing literature. In this paper, we devise a novel Multi-Granularity Fusion Network (MGFN) to combine the proposals generated from different frameworks for complementary filtering and confidence re-ranking. Specifically, we consider the diversity comprehensively from multiple perspectives, e.g. the characteristic aspect, the data aspect, the model aspect and the result aspect. Our MGFN achieves the state-of-the-art performance on the temporal action proposal task with 69.85 AUC score and the temporal action localization task with 38.90 mAP on the challenge testing set.
This technical report presents an overview of our solution used in the submission to 2021 HACS Temporal Action Localization Challenge on both Supervised Learning Track and Weakly-Supervised Learning Track. Temporal Action Localization (TAL) requires to not only precisely locate the temporal boundaries of action instances, but also accurately classify the untrimmed videos into specific categories. However, Weakly-Supervised TAL indicates locating the action instances using only video-level class labels. In this paper, to train a supervised temporal action localizer, we adopt Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through ``local and global temporal context aggregation and complementary as well as progressive boundary refinement. As for the WSTAL, a novel framework is proposed to handle the poor quality of CAS generated by simple classification network, which can only focus on local discriminative parts, rather than locate the entire interval of target actions. Further inspired by the transfer learning method, we also adopt an additional module to transfer the knowledge from trimmed videos (HACS Clips dataset) to untrimmed videos (HACS Segments dataset), aiming at promoting the classification performance on untrimmed videos. Finally, we employ a boundary regression module embedded with Outer-Inner-Contrastive (OIC) loss to automatically predict the boundaries based on the enhanced CAS. Our proposed scheme achieves 39.91 and 29.78 average mAP on the challenge testing set of supervised and weakly-supervised temporal action localization track respectively.
In this report, the technical details of our submission to the EPIC-Kitchens Action Anticipation Challenge 2021 are given. We developed a hierarchical attention model for action anticipation, which leverages Transformer-based attention mechanism to aggregate features across temporal dimension, modalities, symbiotic branches respectively. In terms of Mean Top-5 Recall of action, our submission with team name ICL-SJTU achieved 13.39% for overall testing set, 10.05% for unseen subsets and 11.88% for tailed subsets. Additionally, it is noteworthy that our submission ranked 1st in terms of verb class in all three (sub)sets.
The ActivityNet Large Scale Activity Recognition Challenge 2017 Summary: results and challenge participants papers.
This report describes the technical details of our submission to the EPIC-Kitchens 2021 Unsupervised Domain Adaptation Challenge for Action Recognition. The EPIC-Kitchens dataset is more difficult than other video domain adaptation datasets due to multi-tasks with more modalities. Firstly, to participate in the challenge, we employ a transformer to capture the spatial information from each modality. Secondly, we employ a temporal attention module to model temporal-wise inter-dependency. Thirdly, we employ the adversarial domain adaptation network to learn the general features between labeled source and unlabeled target domain. Finally, we incorporate multiple modalities to improve the performance by a three-stream network with late fusion. Our network achieves the comparable performance with the state-of-the-art baseline T$A^3$N and outperforms the baseline on top-1 accuracy for verb class and top-5 accuracies for all three tasks which are verb, noun and action. Under the team name xy9, our submission achieved 5th place in terms of top-1 accuracy for verb class and all top-5 accuracies.