Do you want to publish a course? Click here

Sensitivity estimates for diffuse, point-like and extended neutrino sources with KM3NeT/ARCA

82   0   0.0 ( 0 )
 Added by Rasa Simone Muller
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The identification of cosmic objects emitting high energy neutrinos could provide new insights about the Universe and its active sources. The existence of these cosmic neutrinos has been proven by the IceCube collaboration, but the big question of which sources these neutrinos originate from, remains unanswered. The KM3NeT detector for Astroparticle Research with Cosmics in the Abyss (ARCA), with a cubic kilometer instrumented volume, is currently being built in the Mediterranean Sea. It will excel at identifying cosmic neutrino sources due to its unprecedented angular resolution for muon neutrinos (< 0.2 degree for E > 10 TeV events). KM3NeT has a view of the sky complementary to IceCube, and is sensitive to neutrinos across a wide range of energies. In order to identify the signature of cosmic neutrino sources in the background of atmospheric neutrinos and muons, statistical methods are being developed and tested with Monte-Carlo pseudo experiments. This contribution presents the most recent sensitivity estimates for diffuse, point-like and extended neutrino sources with KM3NeT/ARCA.



rate research

Read More

KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an $E^{-2}$ spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with $3sigma$ significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX,J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.
We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90% C.L. is $sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the through-going track-like events used in the seven-year IceCube point-source search. The advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor $sim$2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Centre, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No significant evidence for cosmic neutrino sources is found and upper limits on the flux from the various searches are presented.
146 - Ulrich F. Katz 2014
It has recently been suggested that the neutrino mass hierarchy can be experimentally determined from the oscillation pattern of atmospheric neutrinos passing through the Earth by measuring the two-dimensional arrival pattern of neutrinos in energy and zenith angle, in the energy regime of about 3-20 GeV. ORCA (Oscillation Research with Cosmics in the Abyss) is a study addressing the feasibility of such a measurement employing the deep-sea neutrino telescope technology developed for the KM3NeT project. In the following, the underlying physics and resulting experimental signatures will be discussed and some aspects of the ongoing simulation studies presented. A preliminary sensitivity estimate derived from a simplified study strongly indicates that an exposure of at least 20 Mton-years will be required to arrive at conclusive results.
107 - J.A. Aguilar 2007
The ANTARES telescope is being built in the Mediterranean Sea. The detector consists of a 3D array of photomultipliers (PMTs) that detects the Cherenkov light induced by the muons produced in neutrino interactions. Other signatures can also be detected. Since the neutrino fluxes from point-like sources are expected to be small, it is of the utmost importance to take advantage of the ANTARES pointing accuracy (angular resolution better than 0.3 degrees for muon events above 10 TeV) to disentangle a possible signal from the unavoidable atmospheric neutrino background. In order to distinguish an excess of neutrino events from the background, several searching algorithms have been developed within the ANTARES collaboration. In this contribution, the discovery potential and sensitivity to point-like sources of the ANTARES neutrino telescope are presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا