Do you want to publish a course? Click here

ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky

132   0   0.0 ( 0 )
 Added by Giulia Illuminati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the through-going track-like events used in the seven-year IceCube point-source search. The advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor $sim$2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Centre, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No significant evidence for cosmic neutrino sources is found and upper limits on the flux from the various searches are presented.



rate research

Read More

We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a window in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.
We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90% C.L. is $sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions --charged and neutral current interactions of all flavours-- are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an $E^{-2}$ energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at $(alpha,delta) = (343.8^circ, 23.5^circ)$ with a significance of $1.9sigma$. The neutrino flux sensitivity of the search is about $E^2 dvarPhi/dE = 6cdot10^{-9} GeV cm^{-2} s^{-1}$ for declinations from $-90^circ$ up to $-42^circ$, and below $10^{-8} GeV cm^{-2} s^{-1}$ for declinations up to $5^{circ}$. The directions of 106 source candidates and of 13 muon track events from the IceCube HESE sample are investigated for a possible neutrino signal and upper limits on the signal flux are determined.
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates RA=$-$46.8$^{circ}$ and Dec=$-$64.9$^{circ}$ and corresponds to a 2.2$sigma$ background fluctuation. In addition, upper limits on the flux normalization of an E$^{-2}$ muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of 7 events relatively close to the Galactic Centre in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E$^{-2}$ energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1$times$10$^{-8}$ GeV$,$cm$^{-2}$s$^{-1}$, depending on the exact location of the source.
In the past years, the IceCube Collaboration has reported in several analyses the observation of astrophysical high-energy neutrino events. Despite a compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of the majority of these events is still unknown. In this paper, a possible transient origin of the IceCube astrophysical events is searched for using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavour neutrino fluence from the direction of the IceCube candidates are derived. The non-observation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source, to be harder than $-2.3$ and $-2.4$ for each event, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا