Do you want to publish a course? Click here

Shapeshifting diffractive optical devices

71   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In optical devices like diffraction gratings and Fresnel lenses, light wavefront is engineered through the structuring of device surface morphology, within thicknesses comparable to the light wavelength. Fabrication of such diffractive optical elements involves highly accurate multi-step lithographic processes that in fact set into stone both the device morphology and optical functionality. In this work, we introduce shapeshifting diffractive optical elements directly written on an erasable photoresist. We first develop a lithographic configuration that allows writing/erasing cycles of aligned optical elements directly in the light path. Then, we show the realization of complex diffractive gratings with arbitrary combinations of grating vectors. Finally, we demonstrate a shapeshifting diffractive lens that is reconfigured in the light-path in order to change the imaging parameters of an optical system.



rate research

Read More

Atomic systems have long provided a useful material platform with unique quantum properties. The efficient light-matter interaction in atomic vapors has led to numerous seminal scientific achievements including accurate and precise metrology and quantum devices. In the last few decades, the field of thin optical elements with miniscule features has been extensively studied demonstrating an unprecedented ability to control photonic degrees of freedom, both linearly and non-linearly, with applications spanning from photography and spatial light modulators to cataract surgery implants. Hybridization of atoms with such thin devices may offer a new material system allowing traditional vapor cells with enhanced functionality. Here, we fabricate and demonstrate chip-scale, quantum diffractive optical elements which map atomic states to the spatial distribution of diffracted light. Two foundational diffractive elements, lamellar gratings and Fresnel lenses, are hybridized with atomic channels containing hot atomic vapors which demonstrate exceptionally strong frequency dependent behaviors. Providing the design tools for chip-scale atomic diffractive optical elements develops a path for a variety of compact thin quantum-optical elements.
98 - Yong-Liang Xiao 2020
Unitary learning is a backpropagation that serves to unitary weights update in deep complex-valued neural network with full connections, meeting a physical unitary prior in diffractive deep neural network ([DN]2). However, the square matrix property of unitary weights induces that the function signal has a limited dimension that could not generalize well. To address the overfitting problem that comes from the small samples loaded to [DN]2, an optical phase dropout trick is implemented. Phase dropout in unitary space that is evolved from a complex dropout and has a statistical inference is formulated for the first time. A synthetic mask recreated from random point apertures with random phase-shifting and its smothered modulation tailors the redundant links through incompletely sampling the input optical field at each diffractive layer. The physical features about the synthetic mask using different nonlinear activations are elucidated in detail. The equivalence between digital and diffractive model determines compound modulations that could successfully circumvent the nonlinear activations physically implemented in [DN]2. The numerical experiments verify the superiority of optical phase dropout in [DN]2 to enhance accuracy in 2D classification and recognition tasks-oriented.
The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today optical networks both for free-space and optical fiber transmission. Here we present our work of design, fabrication and optical characterization of diffractive optical elements for compact OAM-mode division demultiplexing based on optical transformations. Samples have been fabricated with 3D high-resolution electron beam lithography on polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Their high compactness and efficiency make these optical devices promising for integration into next-generation platforms for OAM-modes processing in telecom applications.
Modern-day computers use electrical signaling for processing and storing data which is bandwidth limited and power-hungry. These limitations are bypassed in the field of communications, where optical signaling is the norm. To exploit optical signaling in computing, however, new on-chip devices that work seamlessly in both electrical and optical domains are needed. Phase change devices can in principle provide such functionality, but doing so in a single device has proved elusive due to conflicting requirements of size-limited electrical switching and diffraction-limited photonic devices. Here, we combine plasmonics, photonics and electronics to deliver a novel integrated phase-change memory and computing cell that can be electrically or optically switched between binary or multilevel states, and read-out in either mode, thus merging computing and communications technologies.
447 - Nathan Dostart 2020
Acousto-optic devices utilize the overlap of acoustic and optical fields to facilitate photon-phonon interactions. For tightly confined optical and acoustic fields, such as the sub-wavelength scales achievable in integrated devices, this interaction is enhanced. Broadband operation which fully benefits from this enhancement requires light and sound to co-propagate in the same cross-section, a geometry currently lacking in the field. We introduce the `acoustic-optical multiplexer, which enables this co-linear geometry, and demonstrate through simulations a proof-of-concept design. Using suspended silicon and silica beams, the multiplexer combines two optical modes and an acoustic mode into a single, co-guided output port with low insertion loss and reflection for both optics and acoustics. The first design in its class, the multiplexer enables integrated acousto-optic devices to achieve efficient photon-phonon interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا