Do you want to publish a course? Click here

Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality

99   0   0.0 ( 0 )
 Added by Nathan Youngblood
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modern-day computers use electrical signaling for processing and storing data which is bandwidth limited and power-hungry. These limitations are bypassed in the field of communications, where optical signaling is the norm. To exploit optical signaling in computing, however, new on-chip devices that work seamlessly in both electrical and optical domains are needed. Phase change devices can in principle provide such functionality, but doing so in a single device has proved elusive due to conflicting requirements of size-limited electrical switching and diffraction-limited photonic devices. Here, we combine plasmonics, photonics and electronics to deliver a novel integrated phase-change memory and computing cell that can be electrically or optically switched between binary or multilevel states, and read-out in either mode, thus merging computing and communications technologies.



rate research

Read More

Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a unique structure. Such a periodic architecture exhibits two fundamental modes; pronounced counter-propagating short-range surface plasmon polariton (SR-SPP) coupled to the Ge2Sb2Te5 (GST) alloy as the feed gap, and the propagative surface plasmon polariton (PR-SPP) resonant modes tunneling to the GST nanostripes. By leveraging the multistate phase transition of alloy from amorphous to the crystalline, which induces significant complex permittivity change, the interplay between such enhanced modes can be drastically modified. Accordingly, in the intermediate phases, the proposed system experiences a coupled condition of operational over-coupling and under-coupling regimes leading to an inherently broadband response. We wisely addressing each gate-tunable meta-atom to achieve robust control over the reflection characteristics, wide phase agility up to 315? or considerable reflectance modulation up to 60%, which facilitate a myriad of on-demand optical functionalities in the telecommunication band. Based on the revealed underlying physics and electro-thermal effects in the GST alloy, a simple systematic approach for realization of an electro-optically tunable multifunctional metadevice governing anomalous reflection angle control (e.g., phased array antenna), near-perfect absorption (e.g., modulator), and polarization conversion (e.g., wave plate) is presented. As a promising alternative to their passive counterparts, such high-speed, non-volatile MSs offer an smart paradigm for reversible, energy-efficient, and programmable optoelectronic devices such as holograms, switches, and polarimeters.
Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability that hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage a tunable all-dielectric reflective metasurface made of a newly emerged class of low-loss optical PCMs with superb characteristics, i.e., antimony trisulphide (Sb$_2$S$_3$), antimony triselenide (Sb$_2$Se$_3$), and binary germanium-doped selenide (GeSe$_3$), to realize switchable, high-saturation, high-efficiency and high-resolution structural colors. Having polarization sensitive building blocks, the presented metasurface can generate two different colors when illuminated by two orthogonally polarized incident beams. Such degrees of freedom (i.e., structural state and polarization) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors suitable for a wide range of applications, including tunable full-color printing and displays, information encryption, and anti-counterfeiting.
The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements of the incident field and to the confinement of light to small regions, typically several orders of magnitude smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges. Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts for fabrication tolerances and measurement uncertainties. In this paper, we develop a reduced order modeling framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures for a wide range of geometry and material parameters. The main ingredients of the proposed method are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation of the time-harmonic Maxwells equations to account for geometry variations; and (iii) proper orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model. To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore optimal designs of a 3D periodic annular nanogap structure.
Since the invention of the laser, adoption of new gain media and device architectures has provided solutions to a variety of applications requiring specific power, size, spectral, spatial, and temporal tunability. Here we introduce a fundamentally new type of tunable semiconductor laser based on a phase-change perovskite metasurface that acts simultaneously as gain medium and optical cavity. As a proof of principle demonstration, we fabricate a subwavelength-thin perovskite metasurface supporting bound states in the continuum (BICs). Upon the perovskite structural phase transitions, both its refractive index and gain vary substantially, inducing fast (1.35 nm/K rate) and broad spectral tunability (>15 nm in the near-infrared), deterministic spatial mode hopping between polarization vortexes, and hysteretic optical bistability of the microlaser. These features highlight the uniqueness of phase-change perovskite tunable lasers, which may find wide applications in compact and low-cost optical multiplexers, sensors, memories, and LIDARs.
Recent results have shown unprecedented control over separation distances between two metallic elements hundreds of nanometers in size, underlying the effects of free-electron nonlocal response also at mid-infrared wavelengths. Most of metallic systems however, still suffer from some degree of inhomogeneity due to fabrication-induced surface roughness. Nanoscale roughness in such systems might hinder the understanding of the role of microscopic interactions. Here we investigate the effect of surface roughness in coaxial nanoapertures resonating at mid-infrared frequencies. We show that although random roughness shifts the resonances in an unpredictable way, the impact of nonlocal effects can still be clearly observed. Roughness-induced perturbation on the peak resonance of the system shows a strong correlation with the effective gap size of the individual samples. Fluctuations due to fabrication imperfections then can be suppressed by performing measurements on structure ensembles in which averaging over a large number of samples provides a precise measure of the ideal systems optical properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا