Do you want to publish a course? Click here

Cross-lingual Transferring of Pre-trained Contextualized Language Models

84   0   0.0 ( 0 )
 Added by Zuchao Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Though the pre-trained contextualized language model (PrLM) has made a significant impact on NLP, training PrLMs in languages other than English can be impractical for two reasons: other languages often lack corpora sufficient for training powerful PrLMs, and because of the commonalities among human languages, computationally expensive PrLM training for different languages is somewhat redundant. In this work, building upon the recent works connecting cross-lingual model transferring and neural machine translation, we thus propose a novel cross-lingual model transferring framework for PrLMs: TreLM. To handle the symbol order and sequence length differences between languages, we propose an intermediate ``TRILayer structure that learns from these differences and creates a better transfer in our primary translation direction, as well as a new cross-lingual language modeling objective for transfer training. Additionally, we showcase an embedding aligning that adversarially adapts a PrLMs non-contextualized embedding space and the TRILayer structure to learn a text transformation network across languages, which addresses the vocabulary difference between languages. Experiments on both language understanding and structure parsing tasks show the proposed framework significantly outperforms language models trained from scratch with limited data in both performance and efficiency. Moreover, despite an insignificant performance loss compared to pre-training from scratch in resource-rich scenarios, our cross-lingual model transferring framework is significantly more economical.



rate research

Read More

304 - Bin He , Di Zhou , Jinghui Xiao 2019
Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.
Recently, fine-tuning pre-trained language models (e.g., multilingual BERT) to downstream cross-lingual tasks has shown promising results. However, the fine-tuning process inevitably changes the parameters of the pre-trained model and weakens its cross-lingual ability, which leads to sub-optimal performance. To alleviate this problem, we leverage continual learning to preserve the original cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks. The experimental result shows that our fine-tuning methods can better preserve the cross-lingual ability of the pre-trained model in a sentence retrieval task. Our methods also achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremendous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
118 - Boliang Zhang , Ajay Nagesh , 2020
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than traditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا