Do you want to publish a course? Click here

Multi-Rate Nyquist-SCM for C-Band 100Gbit/s Signal over 50km Dispersion-Uncompensated Link

158   0   0.0 ( 0 )
 Added by Haide Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, to the best of our knowledge, we propose the first multi-rate Nyquist-subcarriers modulation (SCM) for C-band 100Gbit/s signal transmission over 50km dispersion-uncompensated link. Chromatic dispersion (CD) introduces severe spectral nulls on optical double-sideband signal, which greatly degrades the performance of intensity-modulation and direct-detection systems. In the previous works, high-complexity digital signal processing (DSP) is required to resist the CD-caused spectral nulls. Based on the characteristics of dispersive channel, Nyquist-SCM with multi-rate subcarriers is proposed to keep away from the CD-caused spectral nulls flexibly. Signal on each subcarrier can be individually recovered by a DSP with an acceptable complexity, including the feed-forward equalizer with no more than 31 taps, a two-tap post filter, and maximum likelihood sequence estimation with one memory length. Combining with entropy loading based on probabilistic constellation shaping to maximize the capacity-reach, the C-band 100Gbit/s multi-rate Nyquist-SCM signal over 50km dispersion-uncompensated link can achieve 7% hard-decision forward error correction limit and average normalized generalized mutual information of 0.967. In conclusion, the multi-rate Nyquist-SCM shows great potentials in solving the CD-caused spectral distortions.



rate research

Read More

76 - Haide Wang , Ji Zhou , Dong Guo 2020
In this paper, we propose adaptive channel-matched detection (ACMD) for C-band 64-Gbit/s intensity-modulation and direct-detection (IM/DD) optical on-off keying (OOK) system over a 100-km dispersion-uncompensated link. The proposed ACMD can adaptively compensate most of the link distortions based on channel and noise characteristics, which includes a polynomial nonlinear equalizer (PNLE), a decision feedback equalizer (DFE) and maximum likelihood sequence estimation (MLSE). Based on the channel characteristics, PNLE eliminates the linear and nonlinear distortions, while the followed DFE compensates the spectral nulls caused by chromatic dispersion. Finally, based on the noise characteristics, a post filter can whiten the noise for implementing optimal signal detection using MLSE. To the best of our knowledge, we present a record C-band 64-Gbit/s IM/DD optical OOK system over a 100 km dispersion-uncompensated link achieving 7% hard-decision forward error correction limit using only the proposed ACMD at the receiver side. In conclusion, ACMD-based C-band 64-Gbit/s optical OOK system shows great potential for future optical interconnects.
We consider the problem of recovering a continuous-time bandlimited signal from the discrete-time signal obtained from sampling it every $T_s$ seconds and reducing the result modulo $Delta$, for some $Delta>0$. For $Delta=infty$ the celebrated Shannon-Nyquist sampling theorem guarantees that perfect recovery is possible provided that the sampling rate $1/T_s$ exceeds the so-called Nyquist rate. Recent work by Bhandari et al. has shown that for any $Delta>0$ perfect reconstruction is still possible if the sampling rate exceeds the Nyquist rate by a factor of $pi e$. In this letter we improve upon this result and show that for finite energy signals, perfect recovery is possible for any $Delta>0$ and any sampling rate above the Nyquist rate. Thus, modulo folding does not degrade the signal, provided that the sampling rate exceeds the Nyquist rate. This claim is proved by establishing a connection between the recovery problem of a discrete-time signal from its modulo reduced version and the problem of predicting the next sample of a discrete-time signal from its past, and leveraging the fact that for a bandlimited signal the prediction error can be made arbitrarily small.
Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immediate attention. However, fading of wireless channels can produce aggregate distortions in an AirComp-based FL scheme. To combat this effect, the concept of dynamic learning rate (DLR) is proposed in this work. We begin our discussion by considering multiple-input-single-output (MISO) scenario, since the underlying optimization problem is convex and has closed-form solution. We then extend our studies to more general multiple-input-multiple-output (MIMO) case and an iterative method is derived. Extensive simulation results demonstrate the effectiveness of the proposed scheme in reducing the aggregate distortion and guaranteeing the testing accuracy using the MNIST and CIFAR10 datasets. In addition, we present the asymptotic analysis and give a near-optimal receive beamforming design solution in closed form, which is verified by numerical simulations.
Ultra-reliable low-latency communication (URLLC) requires short packets of data transmission. It is known that when the packet length becomes short, the achievable rate is subject to a penalty when compared to the channel capacity. In this paper, we propose to use faster-than-Nyquist (FTN) signaling to compensate for the achievable rate loss of short packet communications. We investigate the performance of a combination of a low complexity detector of FTN signaling used with nonbinary low-density parity-check (NB-LDPC) codes that is suitable for low-latency and short block length requirements of URLLC systems. Our investigation shows that such combination of low-complexity FTN signaling detection and NB-LDPC codes outperforms the use of close-to-optimal FTN signaling detectors with LDPC codes in terms of error rate performance and also has a considerably lower computational complexity.
Rate-splitting multiple access (RSMA) is a promising technique for downlink multi-antenna communications owning to its capability of enhancing the system performance in a wide range of network loads, user deployments and channel state information at the transmitter (CSIT) inaccuracies. In this paper, we investigate the achievable rate performance of RSMA in a multi-user multiple-input single-output (MU-MISO) network where only slow-varying statistical channel state information (CSI) is available at the transmitter. RSMA-based statistical beamforming and the split of the common stream is optimized with the objective of maximizing the minimum user rate subject to a sum power budget of the transmitter. Two statistical CSIT scenarios are investigated, namely the Rayleigh fading channels with only spatial correlations known at the transmitter, and the uniform linear array (ULA) deployment with only channel amplitudes and mean of phase known at the transmitter. Numerical results demonstrate the explicit max min fairness (MMF) rate gain of RSMA over space division multiple access (SDMA) in both scenarios. Moreover, we demonstrate that RSMA is more robust to the inaccuracy of statistical CSIT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا