No Arabic abstract
Rate-splitting multiple access (RSMA) is a promising technique for downlink multi-antenna communications owning to its capability of enhancing the system performance in a wide range of network loads, user deployments and channel state information at the transmitter (CSIT) inaccuracies. In this paper, we investigate the achievable rate performance of RSMA in a multi-user multiple-input single-output (MU-MISO) network where only slow-varying statistical channel state information (CSI) is available at the transmitter. RSMA-based statistical beamforming and the split of the common stream is optimized with the objective of maximizing the minimum user rate subject to a sum power budget of the transmitter. Two statistical CSIT scenarios are investigated, namely the Rayleigh fading channels with only spatial correlations known at the transmitter, and the uniform linear array (ULA) deployment with only channel amplitudes and mean of phase known at the transmitter. Numerical results demonstrate the explicit max min fairness (MMF) rate gain of RSMA over space division multiple access (SDMA) in both scenarios. Moreover, we demonstrate that RSMA is more robust to the inaccuracy of statistical CSIT.
We consider globally optimal precoder design for rate splitting multiple access in Gaussian multiple-input single-output downlink channels with respect to weighted sum rate and energy efficiency maximization. The proposed algorithm solves an instance of the joint multicast and unicast beamforming problem and includes multicast- and unicast-only beamforming as special cases. Numerical results show that it outperforms state-of-the-art algorithms in terms of numerical stability and converges almost twice as fast.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over a Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with emph{information-theoretic secrecy}. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, a numerical example demonstrates that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
This paper investigates the problem of resource allocation for joint communication and radar sensing system on rate-splitting multiple access (RSMA) based unmanned aerial vehicle (UAV) system. UAV simultaneously communicates with multiple users and probes signals to targets of interest to exploit cooperative sensing ability and achieve substantial gains in size, cost and power consumption. By virtue of using linearly precoded rate splitting at the transmitter and successive interference cancellation at the receivers, RSMA is introduced as a promising paradigm to manage interference as well as enhance spectrum and energy efficiency. To maximize the energy efficiency of UAV networks, the deployment location and the beamforming matrix are jointly optimized under the constraints of power budget, transmission rate and approximation error. To solve the formulated non-convex problem efficiently, we decompose it into the UAV deployment subproblem and the beamforming optimization subproblem. Then, we invoke the successive convex approximation and difference-of-convex programming as well as Dinkelbach methods to transform the intractable subproblems into convex ones at each iteration. Next, an alternating algorithm is designed to solve the non-linear and non-convex problem in an efficient manner, while the corresponding complexity is analyzed as well. Finally, simulation results reveal that proposed algorithm with RSMA is superior to orthogonal multiple access and power-domain non-orthogonal multiple access in terms of power consumption and energy efficiency.
Dual-Functional Radar-Communication (DFRC) system is an essential and promising technique for beyond 5G. In this work, we propose a powerful and unified multi-antenna DFRC transmission framework, where an additional radar sequence is transmitted apart from communication streams to enhance radar beampattern matching capability, and Rate-Splitting Multiple Access (RSMA) is adopted to better manage the interference. RSMA relies on multi-antenna Rate-Splitting (RS) with Successive Interference Cancellation (SIC) receivers, and the split and encoding of messages into common and private streams. We design the message split and the precoders of the radar sequence and communication streams to jointly maximize the Weighted Sum Rate (WSR) and minimize the radar beampattern approximation Mean Square Error (MSE) subject to the per antenna power constraint. An iterative algorithm based on Alternating Direction Method of Multipliers (ADMM) is developed to solve the problem. Numerical results first show that RSMA-assisted DFRC achieves a better tradeoff between WSR and beampattern approximation than Space-Division Multiple Access (SDMA)-assisted DFRC with or without radar sequence, and other simpler radar-communication strategies using orthogonal resources. We also show that the RSMA-assisted DFRC frameworks with and without radar sequence achieve the same tradeoff performance. This is because that the common stream is better exploited in the proposed framework. The common stream of RSMA fulfils the triple function of managing interference among communication users, managing interference between communication and radar, and beampattern approximation. Therefore, by enabling RSMA in DFRC, the system performance is enhanced while the system architecture is simplified since there is no need to use additional radar sequence and SIC. We conclude that RSMA is a more powerful multiple access for DFRC.
Rate-Splitting Multiple Access (RSMA), relying on multi-antenna Rate-Splitting (RS) techniques, has emerged as a powerful strategy for multi-user multi-antenna systems. In this paper, RSMA is introduced as a unified multiple access for multi-antenna radar-communication (RadCom) system, where the base station has a dual communication and radar capability to simultaneously communicate with downlink users and probe detection signals to azimuth angles of interests. Using RS, messages are split into common and private parts, then encoded into common and private streams before being precoded and transmitted. We design the message split and the precoders for this RadCom system such that the Weighted Sum Rate (WSR) is maximized and the transmit beampattern is approximated to the desired radar beampattern under an average transmit power constraint at each antenna. We then propose a framework based on Alternating Direction Method of Multipliers (ADMM) to solve the complicated non-convex optimization problem. Results highlight the benefits of RSMA to unify RadCom transmissions and to manage the interference among radar and communications, over the conventional Space-Division Multiple Access (SDMA) technique.