Do you want to publish a course? Click here

MHD analysis on the physical designs of CFETR and HFRC

86   0   0.0 ( 0 )
 Added by Ping Zhu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The China Fusion Engineering Test Reactor (CFETR) and the Huazhong Field Reversed Configuration (HFRC), currently both under intensive physical and engineering designs in China, are the two major projects representative of the low-density steady-state and high-density pulsed pathways to fusion. One of the primary tasks of the physics designs for both CFETR and HFRC is the assessment and analysis of the magnetohydrodynamic (MHD) stability of the proposed design schemes. Comprehensive efforts on the assessment of MHD stability of CFETR and HFRC baseline scenarios have led to preliminary progresses that may further benefit engineering designs.

rate research

Read More

The CFETR baseline scenario is based on a H-mode equilibrium with high pedestal and highly peaked edge bootstrap current, along with strong reverse shear in safety factor profile. The stability of ideal MHD modes for the CFETR baseline scenario has been evaluated using NIMROD and AEGIS codes. The toroidal mode numbers (n=1-10) are considered in this analysis for different positions of perfectly conducting wall in order to estimate the ideal wall effect on the stability of ideal MHD modes for physics and engineering designs of CFETR. Although, the modes (n=1-10) are found to be unstable in ideal MHD, the structure of all modes is edge localized. Growth rates of all modes are found to be increasing initially with wall position before they reach ideal wall saturation limit (no wall limit). No global core modes are found to be dominantly unstable in our analysis. The design of $q_{min}>2$ and strong reverse shear in $q$ profile is expected to prevent the excitation of global modes. Therefore, this baseline scenario is considered to be suitable for supporting long time steady state discharge in context of ideal MHD physics, if ELMs could be controlled.
This article reports an evaluation on the linear ideal magnetohydrodynamic (MHD) stability of the China Fusion Engineering Test Reactor (CFETR) baseline scenario for various first-wall locations. The initial-value code NIMROD and eigen-value code AEGIS are employed in this analysis. A good agreement is achieved between two codes in the growth rates of $n=1-10$ ideal MHD modes for various locations of the perfect conducting first-wall. The higher-$n$ modes are dominated by ballooning modes and localized in the pedestal region, while the lower-$n$ modes have more prominent external kink components and broader mode profiles. The influences of plasma-vacuum profile and wall shape are also examined using NIMROD. In presence of resistive wall, the low-$n$ ideal MHD instabilities are further studied using AEGIS. For the designed first-wall location, the $n = 1$ resistive wall mode (RWM) is found unstable, which could be fully stabilized by uniform toroidal rotation above 2.9% core Alfven speed.
The aim of this study is to perform a theoretical analysis of the magnetohydrodynamic (MHD) stability and energetic particle effects on a LHD equilibria, calculated during a discharge where energetic-ion-driven resistive interchange mode (EIC) events were triggered. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations suggest that the helically trapped EP driven by the perpendicular neutral beam injector (NBI) further destabilizes the 1/1 MHD-like mode located at the plasma periphery (r/a = 0.88). If the beta of the EP driven by the perpendicular NBI is larger than 0.0025 a 1/1 EIC with a frequency around 3 kHz is destabilized. If the effect of the passing EP driven by the tangential NBI is included on the model, any enhancement of the injection intensity of the tangential NBI below beta=0.025 leads to a decrease of the instability growth rate. The simulations indicate that the perpendicular NBI EP is the main driver of the EIC events, as it was observed in the experiment. If the effect of the helical couplings are added in the model, an 11/13 EIC is destabilized with a frequency around 9 kHz, inward shifted (r/a = 0.81) compared to the 1/1 EIC. Thus, one possible explanation for the EIC frequency chirping down from 9 to 3 kHz is a transition between the 11/13 to the 1/1 EIC due to a weakening of the destabilizing effect of the high n modes, caused by a decrease of the EP drive due to a loss of helically trapped EP or a change in the EP distribution function after the EIC burst.
58 - Zhao Deng , L.L. Lao , V.S. Chan 2019
This paper develops two non-inductive steady state scenarios for larger size configuration of China Fusion Engineering Test Reactor (CFETR) with integrated modeling simulations. A self-consistent core-pedestal coupled workflow for CFETR is developed under integrated modeling framework OMFIT, which allows more accurate evaluation of CFETR performance. The workflow integrates equilibrium code EFIT, transport codes ONETWO and TGYRO, and pedestal code EPED. A fully non-inductive baseline phase I scenario is developed with the workflow, which satisfies the minimum goal of Fusion Nuclear Science Facility. Compared with previous work, which proves the larger size and higher toroidal field CFETR configuration than has the advantages of reducing heating and current drive requirements, lowering divertor and wall power loads, allowing higher bootstrap current fraction and better confinement. A fully non-inductive high-performance phase II scenario is developed, which explores the alpha-particle dominated self-heating regime. Phase II scenario achieves the target of fusion power Pfus>1GW and fusion gain Qfus>20, and it largely reduces auxiliary heating and current drive power. Moreover, the large neutron production of phase II increases the energy generation power and tritium breeding rate.
139 - Rui Han , Ping Zhu , Linjin Zheng 2021
The stability of the $n=1$ resistive wall modes (RWMs) is investigated using the AEGIS code for the newly designed China Fusion Engineering Test Reactor (CFETR) 1GW steady-state operating (SSO) scenario. Here, $n$ is the toroidal mode number. Due to the large fraction of bootstrap current contribution, the profile of safety factor q is deeply reversed in magnetic shear in the central core region and locally flattened within the edge pedestal. Consequently the pressure-driven infernal components develop in the corresponding q-flattened regions of both core and edge. However, the edge infernal components dominate the $n=1$ RWM structure and lead to lower $beta_N$ limits than the designed target $beta_N$ for the CFETR 1GW SSO scenario. The edge rotation is found the most critical to the stabilization due to the dominant influence of the edge infernal components, which should be maintained above $1.5%Omega_{A0}$ in magnitude in order for the rotation alone to fully suppress the $n=1$ RWM in the CFETR 1GW SSO scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا