Do you want to publish a course? Click here

Analysis of the MHD stability and energetic particles effects on EIC events in LHD plasma using a Landau-closure model

119   0   0.0 ( 0 )
 Added by Jacobo Varela
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this study is to perform a theoretical analysis of the magnetohydrodynamic (MHD) stability and energetic particle effects on a LHD equilibria, calculated during a discharge where energetic-ion-driven resistive interchange mode (EIC) events were triggered. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations suggest that the helically trapped EP driven by the perpendicular neutral beam injector (NBI) further destabilizes the 1/1 MHD-like mode located at the plasma periphery (r/a = 0.88). If the beta of the EP driven by the perpendicular NBI is larger than 0.0025 a 1/1 EIC with a frequency around 3 kHz is destabilized. If the effect of the passing EP driven by the tangential NBI is included on the model, any enhancement of the injection intensity of the tangential NBI below beta=0.025 leads to a decrease of the instability growth rate. The simulations indicate that the perpendicular NBI EP is the main driver of the EIC events, as it was observed in the experiment. If the effect of the helical couplings are added in the model, an 11/13 EIC is destabilized with a frequency around 9 kHz, inward shifted (r/a = 0.81) compared to the 1/1 EIC. Thus, one possible explanation for the EIC frequency chirping down from 9 to 3 kHz is a transition between the 11/13 to the 1/1 EIC due to a weakening of the destabilizing effect of the high n modes, caused by a decrease of the EP drive due to a loss of helically trapped EP or a change in the EP distribution function after the EIC burst.



rate research

Read More

The aim of this study is to analyze the stability of the Alfven eigenmodes (AE) in the Chinese First Quasi-axisymmetric Stellarator (CFQS). The AE stability is calculated using the code FAR3d that solves the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moment for the energetic particles (EP) species including the effect of the helical couplings and acoustic modes. The Landau damping and resonant destabilization effects are added in the model by a given closure relation. The simulation results indicate the destabilization of n = 1 to 4 AEs by EP during the slowing down process, particularly n = 1 and n = 2 toroidal AEs (TAE), n = 3 elliptical AE (EAE) and n = 4 non circular AE (NAE). If the resonance is caused by EPs with an energy above 17 keV (weakly thermalized EP), n = 2 EAEs and n = 3 NAEs are unstable. On the other hand, EPs with an energy below 17 keV (late thermalization stage) lead to the destabilization of n = 3 and n = 4 TAEs. The simulations for an off-axis NBI injection indicate the further destabilization of n = 2 to 4 AEs although the growth rate of the n = 1 AEs slightly decreases, so no clear optimization trend with respect to the NBI deposition region is identified. In addition, n = 2, 4 helical AE (HAE) are unstable above an EP b{eta} threshold. Also, if the thermal b{eta} of the simulation increases (higher thermal plasma density) the AE stability of the plasma improves. The simulations including the effect of the finite Larmor radius and electron-ion Landau damping show the stabilization of the n = 1 to 4 EAE/NAEs as well as a decrease of the growth rate and frequency of the n = 1 to 4 BAE/TAEs.
The aim of the present study is to analyze the stability of the pressure gradient driven modes (PM) and Alfven eigenmodes (AE) in the Large Helical Device (LHD) plasma if the rotational transform profile is modified by the current drive of the tangential neutral beam injectors (NBI). This study forms a basic search for optimized operation scenarios with reduced mode activity. The analysis is performed using the code FAR3d which solves the reduced MHD equations describing the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations for density and parallel velocity moments of the energetic particle (EP) species, including the effect of the acoustic modes. The Landau damping and resonant destabilization effects are added via the closure relation. On-axis and off-axis NBI current drive modifies the rotational transform which becomes strongly distorted as the intensity of the neutral beam current drive (NBCD) increases, leading to wider continuum gaps and modifying the magnetic shear. The simulations with on-axis NBI injection show that a counter (ctr-) NBCD in inward shifted and default configurations leads to a lower growth rate of the PM, although strong n=1 and 2 AEs can be destabilized. For the outward shifted configurations, a co-NBCD improves the AEs stability but the PM are further destabilized if the co-NBCD intensity is 30 kA/T. If the NBI injection is off-axis, the plasma stability is not significantly improved due to the further destabilization of the AE and energetic particle modes (EPM) in the middle and outer plasma region.
The aim of the present study is to perform a theoretical analysis of different strategies to stabilize energetic-ion-driven resistive interchange mode (EIC) in LHD plasma. We use a reduced MHD for the thermal plasma coupled with a gyrofluid model for the energetic particles (EP) species. The hellically trapped EP component is introduced through a modification of the drift frequency to include their precessional drift. The stabilization trends of the 1/1 EIC observed experimentally with respect to the thermal plasma density and temperature are reproduced by the simulations, showing a reasonable agreement with the data. The LHD operation scenarios with stable 1/1 EIC are identified, leading to the stabilization of the 1/1 EIC if the thermal plasma density and temperature are above a given threshold. The 1/1 EIC are also stabilized if the rotational transform is modified in a way that the 1/1 rational surface is located further away than 0.9 times the normalized radius, or the magnetic shear in the plasma periphery is enhanced. Also, LHD discharges with large magnetic fields show a higher EIC destabilization threshold with respect to the thermal plasma density. If the perpendicular NBI deposition region is moved further inward than 0.875 times the normalized radius the 1/1 EIC are also stabilized. In addition, increasing the perpendicular NBI voltage such that the EP energy is higher than 30 keV stabilizes the 1/1 EIC. Moreover, Deuterium plasmas show a higher stability threshold for the 1/1 EIC than Hydrogen plasmas. The experimental data shows a larger time interval between EIC events as the power of the tangential NBI is increased providing that the perpendicular NBI power is at least 13 MW. This implies a stabilizing effect of the tangential NBI.
Alfven Eigenmodes (AE) can be destabilized during ITER discharges driven by neutral beam injection (NBI) energetic particles (EP) and alpha particles. The aim of the present study is to analyze the AE stability of different ITER operation scenarios considering multiple energetic particle species. We use the reduced magneto-hydrodynamic (MHD) equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species including the effect of the acoustic modes. The AEs driven by the NBI EP and alpha particles are stable in the configurations analyzed, only MHD-like modes with large toroidal couplings are unstable, although both can be destabilized if the EP beta increases above a threshold. The threshold is two times the model beta value for the NBI EP and alpha particles in the reverse shear case, leading to the destabilization of Beta induced AE (BAE) near the magnetic axis with a frequency of 25-35 kHz and Toroidal or Elliptical AE (TAE/EAE) in the reverse shear region with a frequency of 125-175 kHz, respectively. On the other hand, the hybrid and steady state configurations show a threshold 3 times larger with respect to the model beta for the alpha particle and 40 times for the NBI EP, also destabilizing BAE and TAE between the inner and middle plasma region. In addition, a extended analysis of the reverse shear scenario where the beta of both alpha particles and NBI EP are above the AE threshold, multiple EP damping effects are also identified as well as optimization trends regarding the resonance properties of the alpha particle and NBI EP with the bulk plasma.
We analyze the effects of the passing energetic particles on the resistive ballooning modes (RBM) and the energetic particle driven modes in JT-60SA plasma, which leads to the prediction of the stability in N-NBI heated plasma. The analysis is performed using the code FAR3d that solves the reduced MHD equations describing the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particle (EP) species assuming an averaged Maxwellian EP distribution fitted to the slowing down distribution, including the effect of the acoustic modes. The simulations show the possible destabilization of a 3/2-4/2 TAE with a frequency (f) of 115 kHz, a 6/4-7/4 TAE with f=98 kHz and a 6/4 or 7/4 BAE with f=57 kHz in the ITER-like inductive scenario. If the energetic particle beta increases, Beta induced AEs (BAE), Toroidal AEs (TAE) and Elliptical AEs (EAE) are destabilized between the inner-middle plasma region, leading to the overlapping of AE of different toroidal families. If these instabilities coexist in the non-linear saturation phase the EP transport could be enhanced leading to a lower heating efficiency. For a hypothetical configuration based on the ITER-like inductive scenario but an center peaked EP profile, the EP beta threshold increases and several BAEs are destabilized in the inner plasma region, indicating an improved AE stability with respect to the off-axis peaked EP profile. In addition, the analysis of a hypothetical JT-60SA scenario with a resonant q=1 in the inner plasma region shows the destabilization of fishbones-like instabilities by the off-axis peaked EP profile. Also, the EPs have an stabilizing effect on the RBM, stronger as the population of EP with low energies (below 250 keV) increases at the plasma pedestal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا