No Arabic abstract
Given a two-variable function f without critical points and a compact region R bounded by two level curves of f, this note proves that the integral over R of fs second-order directional derivative in the tangential directions of the interceding level curves is proportional to the rise in f-value over R. Also discussed are variations on this result when critical points are present or R becomes unbounded.
We investigate and derive second solutions to linear homogeneous second-order difference equations using a variety of methods, in each case going beyond the purely formal solution and giving explicit expressions for the second solution. We present a new implementation of dAlemberts reduction of order method, applying it to linear second-order recursion equations. Further, we introduce an iterative method to obtain a general solution, giving two linearly independent polynomial solutions to the recurrence relation. In the case of a particular confluent hypergeometric function for which the standard second solution is not independent of the first, i.e. the solutions are degenerate, we use the corresponding differential equation and apply the extended Cauchy-integral method to find a polynomial second solution for the difference equation. We show that the standard dAlembert method also generates this polynomial solution.
We consider the second variational derivative of a given gauge-natural invariant Lagrangian taken with respect to (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms. By requiring such a second variational derivative to vanish, {em via} the Second Noether Theorem we find that a covariant strongly conserved current is canonically associated with the deformed Lagrangian obtained by contracting Euler--Lagrange equations of the original Lagrangian with (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms lying in the kernel of the generalized gauge-natural Jacobi morphism.
In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polinomials, which are uniform in all the parameters.
The q-Hermite I-Sobolev type polynomials of higher order are consider for their study. Their hypergeometric representation is provided together with further useful properties such as several structure relations which give rise to a three-term recurrence relation of their elements. Two different q-difference equations satisfied by the q-Hermite I-Sobolev type polynomials of higher order are also established.