Do you want to publish a course? Click here

Anomalous Transport in High-Mobility Superconducting SrTiO$_3$ Thin Films

158   0   0.0 ( 0 )
 Added by Bharat Jalan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO$_3$ films with low-temperature mobility exceeding 42,000 cm$^2$V$^{-1}$s$^{-1}$ at low carrier density of 3 x 10$^{17}$ cm$^{-3}$ were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition (LT) where the third band becomes occupied, revealing dominant intra-band scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature-dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- vs intra-band scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO$_3$.



rate research

Read More

Nb-doped SrTiO$_{3}$ epitaxial thin films have been prepared on (001) SrTiO$_{3}$ substrates using pulsed laser deposition. A high substrate temperature ($>1000^{circ}{C}$) was found to be necessary to achieve 2-dimensional growth. Atomic force microscopy reveals atomically flat surfaces with 3.9 AA $ $ steps. The films show a metallic behavior, residual resistivity ratios between 10 and 100, and low residual resistivity of the order of 10$^{-4}$$Omega$cm. At 0.3 K, a sharp superconducting transition, reaching zero resistance, is observed.
SrTiO$_3$ is an incipient ferroelectric on the verge of a polar instability, which is avoided at low temperatures by quantum fluctuations. Within this unusual quantum paraelectric phase, superconductivity persists despite extremely dilute carrier densities. Ferroelectric fluctuations have been suspected to play a role in the origin of superconductivity by contributing to electron pairing. To investigate this possibility, we used optical second harmonic generation to measure the doping and temperature dependence of the ferroelectric order parameter in compressively strained SrTiO$_3$ thin films. At low temperatures, we uncover a spontaneous out-of-plane ferroelectric polarization with an onset that correlates perfectly with normal-state electrical resistivity anomalies. These anomalies have previously been associated with an enhancement of the superconducting critical temperature in doped SrTiO$_3$ films, directly linking the ferroelectric and superconducting phases. We develop a long-range mean-field Ising model of the ferroelectric phase transition to interpret the data and extract the relevant energy scales in the system. Our results support a long-suspected connection between ferroelectricity and superconductivity in SrTiO$_3$, but call into question the role played by ferroelectric fluctuations.
322 - Heshan Yu , Jie Yuan , Beiyi Zhu 2017
The techniques of growing films with different parameters in single process make it possible to build up a sample library promptly. In this work, with a precisely controlled moving mask, we synthetized superconducting La2-xCexCuO4+/-{delta} combinatorial films on one SrTiO3 substrate with the doping levels from x = 0.1 to 0.19. The monotonicity in doping along the designed direction is verified by micro-region x-ray diffraction and electric transport measurements. More importantly, by means of numerical simulation, the real change of doping levels is in accordance with a linear gradient variation of doping levels in the La2-xCexCuO4+/-{delta} combinatorial films. Our results indicate that it is promising to accurately investigate materials with critical composition by combinatorial film technique.
84 - M. Uchida , M. Ide , M. Kawamura 2019
We report large enhancement of upper critical field Hc2 observed in superconducting Sr2RuO4 thin films. Through dimensional crossover approaching two dimensions, Hc2 except the in-plane field direction is dramatically enhanced compared to bulks, following a definite relation distinct from bulk one between Hc2 and the transition temperature. The anomalous enhancement of Hc2 is highly suggestive of important changes of the superconducting properties, possibly accompanied with rotation of the triplet d-vector. Our findings will become a crucial step to further explore exotic properties by employing Sr2RuO4 thin films.
We present numerical and analytical studies of coupled nonlinear Maxwell and thermal diffusion equations which describe nonisothermal dendritic flux penetration in superconducting films. We show that spontaneous branching of propagating flux filaments occurs due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heat generation. The branching is triggered by a thermomagnetic edge instability which causes stratification of the critical state. The resulting distribution of magnetic microavalanches depends on a spatial distribution of defects. Our results are in good agreement with experiments performed on Nb films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا