Do you want to publish a course? Click here

Algebraic localization of Wannier functions implies Chern triviality in non-periodic insulators

63   0   0.0 ( 0 )
 Added by Kevin Stubbs
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to $0$) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy $int |boldsymbol{x}|^2 |w(boldsymbol{x})|^2 ,textrm{d}{boldsymbol{x}} < infty$). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay ($int |boldsymbol{x}|^{2+epsilon} |w(boldsymbol{x})|^2 ,textrm{d}{boldsymbol{x}} < infty$ for any $epsilon > 0$) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.



rate research

Read More

We describe some applications of group- and bundle-theoretic methods in solid state physics, showing how symmetries lead to a proof of the localization of electrons in gapped crystalline solids, as e.g. insulators and semiconductors. We shortly review the Bloch-Floquet decomposition of periodic operators, and the related concepts of Bloch frames and composite Wannier functions. We show that the latter are almost-exponentially localized if and only if there exists a smooth periodic Bloch frame, and that the obstruction to the latter condition is the triviality of a Hermitian vector bundle, called the Bloch bundle. The role of additional $mathbb{Z}_2$-symmetries, as time-reversal and space-reflection symmetry, is discussed, showing how time-reversal symmetry implies the triviality of the Bloch bundle, both in the bosonic and in the fermionic case. Moreover, the same $mathbb{Z}_2$-symmetry allows to define a finer notion of isomorphism and, consequently, to define new topological invariants, which agree with the indices introduced by Fu, Kane and Mele in the context of topological insulators.
For a large class of physically relevant operators on a manifold with discrete group action, we prove general results on the (non-)existence of a basis of smooth well-localised Wannier functions for their spectral subspaces. This turns out to be equivalent to the freeness of a certain Hilbert module over the group $C^*$-algebra canonically associated to the spectral subspace. This brings into play $K$-theoretic methods and justifies their importance as invariants of topological insulators in physics.
We develop a strong coupling approach towards quantum magnetism in Mott insulators for Wannier obstructed bands. Despite the lack of Wannier orbitals, electrons can still singly occupy a set of exponentially-localized but nonorthogonal orbitals to minimize the repulsive interaction energy. We develop a systematic method to establish an effective spin model from the electron Hamiltonian using a diagrammatic approach. The nonorthogonality of the Mott basis gives rise to multiple new channels of spin-exchange (or permutation) interactions beyond Hartree-Fock and superexchange terms. We apply this approach to a Kagome lattice model of interacting electrons in Wannier obstructed bands (including both Chern bands and fragile topological bands). Due to the orbital nonorthogonality, as parameterized by the nearest neighbor orbital overlap $g$, this model exhibits stable ferromagnetism up to a finite bandwidth $Wsim U g$, where $U$ is the interaction strength. This provides an explanation for the experimentally observed robust ferromagnetism in Wannier obstructed bands. The effective spin model constructed through our approach also opens up the possibility for frustrated quantum magnetism around the ferromagnet-antiferromagnet crossover in Wannier obstructed bands.
We investigate spin transport in 2-dimensional insulators, with the long-term goal of establishing whether any of the transport coefficients corresponds to the Fu-Kane-Mele index which characterizes 2d time-reversal-symmetric topological insulators. Inspired by the Kubo theory of charge transport, and by using a proper definition of the spin current operator, we define the Kubo-like spin conductance $G_K^{s_z}$ and spin conductivity $sigma_K^{s_z}$. We prove that for any gapped, periodic, near-sighted discrete Hamiltonian, the above quantities are mathematically well-defined and the equality $G_K^{s_z} = sigma_K^{s_z}$ holds true. Moreover, we argue that the physically relevant condition to obtain the equality above is the vanishing of the mesoscopic average of the spin-torque response, which holds true under our hypotheses on the Hamiltonian operator. This vanishing condition might be relevant in view of further extensions of the result, e.g. to ergodic random discrete Hamiltonians or to Schrodinger operators on the continuum. A central role in the proof is played by the trace per unit volume and by two generalizations of the trace, the principal value trace and it directional version.
99 - N. Read 2016
In a tight-binding lattice model with $n$ orbitals (single-particle states) per site, Wannier functions are $n$-component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly-supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for non-interacting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians---that is, class A in the ten-fold classification of Hamiltonians and band structures---a set of compactly-supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension $d$ of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a non-trivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the non-trivial bundles that can arise from compactly-supported Wannier-type functions are those that may possess, in each of $d$ directions, the non-trivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic $K$-theory, based on a ring of polynomials in $e^{pm ik_x}$, $e^{pm ik_y}$, . . . , which occur as entries in the Fourier-transformed Wannier functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا