Do you want to publish a course? Click here

Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry

155   0   0.0 ( 0 )
 Added by Gianluca Panati
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe some applications of group- and bundle-theoretic methods in solid state physics, showing how symmetries lead to a proof of the localization of electrons in gapped crystalline solids, as e.g. insulators and semiconductors. We shortly review the Bloch-Floquet decomposition of periodic operators, and the related concepts of Bloch frames and composite Wannier functions. We show that the latter are almost-exponentially localized if and only if there exists a smooth periodic Bloch frame, and that the obstruction to the latter condition is the triviality of a Hermitian vector bundle, called the Bloch bundle. The role of additional $mathbb{Z}_2$-symmetries, as time-reversal and space-reflection symmetry, is discussed, showing how time-reversal symmetry implies the triviality of the Bloch bundle, both in the bosonic and in the fermionic case. Moreover, the same $mathbb{Z}_2$-symmetry allows to define a finer notion of isomorphism and, consequently, to define new topological invariants, which agree with the indices introduced by Fu, Kane and Mele in the context of topological insulators.



rate research

Read More

Much of the recent enthusiasm directed towards topological insulators as a new state of matter is motivated by their hallmark feature of protected chiral edge states. In fermionic systems, Kramers degeneracy gives rise to these entities in the presence of time-reversal symmetry (TRS). In contrast, bosonic systems obeying TRS are generally assumed to be fundamentally precluded from supporting edge states. In this work, we dispel this perception and experimentally demonstrate counter-propagating chiral states at the edge of a time-reversal-symmetric photonic waveguide structure. The pivotal step in our approach is encoding the effective spin of the propagating states as a degree of freedom of the underlying waveguide lattice, such that our photonic topological insulator is characterised by a $mathbb{Z}_2$-type invariant. Our findings allow for fermionic properties to be harnessed in bosonic systems, thereby opening new avenues for topological physics in photonics as well as acoustics, mechanics and even matter waves.
For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to $0$) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy $int |boldsymbol{x}|^2 |w(boldsymbol{x})|^2 ,textrm{d}{boldsymbol{x}} < infty$). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay ($int |boldsymbol{x}|^{2+epsilon} |w(boldsymbol{x})|^2 ,textrm{d}{boldsymbol{x}} < infty$ for any $epsilon > 0$) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.
We provide numerical evidence that the Onsager symmetry remains valid for systems subject to a spatially dependent magnetic field, in spite of the broken time-reversal symmetry. In addition, for the simplest case in which the field strength varies only in one direction, we analytically derive the result. For the generic case, a qualitative explanation is provided.
This paper is devoted to the construction of differential geometric invariants for the classification of Quaternionic vector bundles. Provided that the base space is a smooth manifold of dimension two or three endowed with an involution that leaves fixed only a finite number of points, it is possible to prove that the Wess-Zumino term and the Chern-Simons invariant yield topological quantities able to distinguish between inequivalent realization of Quaternionic structures.
We propose a two-dimensional time-reversal invariant system of essentially non-interacting electrons on a square lattice that exhibits configurations with fractional charges e/2. These are vortex-like topological defects in the dimerization order parameter describing spatial modulation in the electron hopping amplitudes. Charge fractionalization is established by a simple counting argument, analytical calculation within the effective low-energy theory, and by an exact numerical diagonalization of the lattice Hamiltonian. We comment on the exchange statistics of fractional charges and possible realizations of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا